
12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 1/15

Optimism Audit Report:
ECDSA Wallet

dapp.org

fv@dapp.org.uk

last updated: 12.01.2021

Table of Contents

Summary
Scope
Tests
Team
Changelog

System Overview
Contract Map

Findings
Bugs

B01 L1 transactions can be replayed on L2
B02 Relayer can provide insufficient gas for inner transaction
B03 Account overcharges fees if the tx uses less gas then specified in gasLimit
B04 Arithmetic overflow in relayer fee calculation
B05 Arithmetic underflow in gas limit calculation
B06 Transactions can be executed despite failing gas transfer
B07 Incorrect casting in LibBytes32.fromAddress
B08 Arithmetic overflow in input validation for LibBytesUtils.slice
B09 Memory corruption in Lib_RLPWriter.writeAddress
B10 Memory corruption in LibBytesUtils.slice
B11 ovmSETNONCE and ovmCREATE allows users to overflow their nonce

mailto:fv@dapp.org.uk

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 2/15

B12 The value of a transaction is silently ignored in
OVM_ECDSAContractAccount

Improvements
I01 Use safemath
I02 Replace usage of Lib_BytesUtils.concat with abi.encodePacked
I03 Use EIP-1967 for administering proxy implementation slots
I04 Make use of immutable
I05 Redundant casts in OVM_SequencerEntrypoint
I06 Missing documentation for location of v parameter in calldata
I07 Avoid duplication of transaction type enum

Notes and Miscellanea
Use of ABIEncoderV2
Very high values accepted for transaction parameters
Inconsistent ordering of transaction fields
Unchecked EOA creation
Relayers must maintain an implementation allowlist
Use of address(0) as a sentinel value may interfere with trading workflows

Appendix A. Bug Classifications

Summary

From November 18th to November 27th, a team of four engineers spent a total of 5 person weeks
reviewing the ECDSA Smart Wallet contracts for the OVM optimistic rollup.

This work was carried out against the following git repository:

ethereum-optimism/contracts-v2 at bb3539bbd10c15a72a46cf4fb8d2472ef68f6322

The team found 12 issues, of which 10 were high severity, and 7 were both high severity and high
likelihood.

The team additionally identified 7 potential improvements to gas efficiency or code clarity.

The discovered issues can be broadly grouped into the following categories:

Insufficient validation of transaction parameters

https://github.com/ethereum-optimism/contracts-v2

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 3/15

Exploits in the relayer compensation mechanisms
Memory handling errors in low level libraries
Insufficient restrictions on user actions
Unsafe math

Scope

The team reviewed the code contained within OVM_ECDSAContractAccount.sol and
OVM_ProxyEOA.sol with the aim of validating the following security properties:

The account will not execute any message which was not authenticated by a user
The account will always execute a message which conforms to the standard Ethereum EOA
specification
The account's implementation cannot be upgraded unless the user consents to it
The account cannot be destructed or otherwise caused to permanently brick

The OVM smart contracts are a large and complex system, and the team made the following
assumptions to allow the analysis of the contract wallet in isolation from the system as a whole:

The Execution Manager "correctly implements its EVM equivalents", i.e., each ovmOPCODE
behaves as you would expect the OPCODE to behave in the EVM, except its inputs and
outputs are call/returndata.
The ovmGETNONCE and ovmSETNONCE opcodes work properly as a way for OVM contracts to
access and update their own nonce
The Lib_SafeExecutionManagerInteraction contract correctly allows for the above
functionalities to be preserved, i.e., not only is the EVM correctly implemented, but using
Lib_SafeExecutionManagerInteraction to access the EVM will not violate that
correctness.

Tests

To facilitate the analysis, the team implemented a suite of integration and property tests using the
dapptools toolbox, which can be found at https://github.com/dapp-org/optimism-tests/. This
includes demonstrations of most of the vulnerabilities described in this document.

Team

https://github.com/ethereum-optimism/contracts-v2/blob/bb3539bbd10c15a72a46cf4fb8d2472ef68f6322/contracts/optimistic-ethereum/OVM/accounts/OVM_ECDSAContractAccount.sol
https://github.com/ethereum-optimism/contracts-v2/blob/bb3539bbd10c15a72a46cf4fb8d2472ef68f6322/contracts/optimistic-ethereum/OVM/accounts/OVM_ProxyEOA.sol
https://github.com/dapphub/dapptools
https://github.com/dapp-org/optimism-tests/

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 4/15

The review was carried out by the following members of the dapp.org collective:

David Terry
Denis Erfurt
Jenny Pollack
Martin Lundfall

Changelog

A revision history for this document can be found here

System Overview

The OVM implements full account abstraction. End user accounts are represented by a smart
contract wallet (OVM_ProxyEOA), which sits at the same address in the OVM as the users account
does in L1.

This contract implements a user upgradable delegatecall based proxy that forwards all calls
(except for upgrade(address) and getImplementation()) to the address stored at a hardcoded
IMPLEMENTATION_KEY.

The OVM_ExecutionManager implements a new OVM specific opcode ovmCREATEEOA, which
accepts a message hash and signature over that hash, and creates an OVM_ProxyEOA for the message
signer. This opcode sets the implementation of the deployed proxy to the
OVM_ECDSAContractAccount precompile (0x4200000000000000000000000000000000000003).

The OVM_ECDSAContractAccount has one method:

execute(

 bytes memory _transaction,

 Lib_OVMCodec.EOASignatureType _signatureType,

 uint8 _v,

 bytes32 _r,

 bytes32 _s

)

http://dapp.org/
https://github.com/dapp-org/optimism-report/commits/main

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 5/15

This takes a serialized transaction, a flag denoting its encoding, and a signature over that
transaction. Two kinds of transaction encoding are supported:

1. The RLP encoding of:

(nonce, gasPrice, gasLimit, to, value, data, chainId)

1. An eth signed message (prefix: \x19Ethereum Signed Message:\n32) consisting of the abi
encoding of:

(nonce, gasLimit, gasPrice, chainId, to, data)

The execute method takes this transaction, checks that it was signed by the L2 address of the
account, transfers an amount of the L2 WETH to the relayer (the caller of the execute method), and
then executes the call specified in the transaction.

All calls to the execute method must be wrapped in a native OVM transaction, and included in the
L2 transaction chain, either trustlessly via the L1 transaction queue
(OVM_CanonicalTransactionChain.appendBatch) or by the OVM sequencer on behalf of the
user (OVM_CanonicalTransactionChain.appendSequencerBatch).

Transactions submitted by the sequencer will by convention begin with a call into the
OVM_ProxySequencerEntrypoint precompile
(0x4200000000000000000000000000000000000004), which has it's initial implementation set to
the OVM_SequencerEntrypoint precompile
(0x4200000000000000000000000000000000000005), which uses a more compressed transaction
representation and also creates EOA contract accounts as needed.

Contract Map

Lib_RLPReader (lib)

Legend

toRLPItem
readString

readBool

Internal Call
External Call

Defined Contract
Undefined Contract

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 6/15

OVM_ECDSAContractAccount

Lib_BytesUtils (lib)

Lib_OVMCodec (lib)

Lib_RLPWriter (lib)

Lib_ECDSAUtils (lib)

Lib_SafeExecutionManagerWrapper (lib)

iOVM_ECDSAContractAccount (iface)

execute

decodeEIP155Transaction

recover

safeREQUIRE

safeADDRESS

safeGETNONCE

safeCALLER

safeCALL

safeCREATE

safeSETNONCE

safeDELEGATECALL

safeREVERT

safeSLOAD

safeSSTORE

concat

slice

toBytes32toUint256

toUint24

toUint8

toAddress

toNibbles

fromNibbles

equal

readList

readUint256readAddress

readBytes

decompressEIP155Transaction

encodeEIP155Transaction

writeUint writeBytes

writeAddress

writeList

encodeTransaction
hashTransaction

toEVMAccount

encodeEVMAccount

decodeEVMAccount

readBytes32

hashBatchHeader

_decodeLength

_copy
readRawBytes

_toBinary

_writeLength

_flattenwriteString

writeInt

writeBool

_memcpy

getMessageHash

getNativeMessageHash

getEthSignedMessageHash

_safeExecutionManagerInteraction

safeEXTCODESIZE

safeCHAINID

execute

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 7/15

OVM_ProxyEOA

<Constructor>

_setImplementation

<Fallback> getImplementation

upgrade

safeCHAINID

safeCREATEEOA

Findings

Our findings are separated into three sections:

Bugs: issues that impact the security or correctness of the system
Improvements: changes that could improve the clarity, functionality, or efficiency of the
system, but that do not impact security or correctness
Notes and Miscellanea: points of interest that do not merit an explicit recommendation for
change

Bugs

Finding Severity Likelihood Addressed

B01 L1 transactions can be replayed on L2 High High 0aa6e3a

B02 Relayer can provide insufficient gas for inner transaction High High 6a4d48a

B03 Account overcharges fees if the tx uses less gas then
specified in gasLimit

High High No

B04 Arithmetic overflow in relayer fee calculation High High No

B05 Arithmetic underflow in gas limit calculation High High 6a4d48a

B06 Transactions can be executed despite failing gas transfer High High 46e2f65

B07 Incorrect casting in LibBytes32.fromAddress High High 244424f

B08 Arithmetic overflow in input validation for
LibBytesUtils.slice

High Low 6712904

B09 Memory corruption in Lib_RLPWriter.writeAddress High Low 96baeba

https://github.com/ethereum-optimism/contracts-v2/commit/0aa6e3a6380480355efe2afccc064bbd52d0be77
https://github.com/ethereum-optimism/contracts-v2/commit/6a4d48ae185b7ea984bdac84e08f0b4da3e5e5cc
https://github.com/ethereum-optimism/contracts-v2/commit/6a4d48ae185b7ea984bdac84e08f0b4da3e5e5cc
https://github.com/ethereum-optimism/contracts-v2/commit/46e2f65cf6cc33fc78adf399d9ab059d4de759e3
https://github.com/ethereum-optimism/contracts-v2/commit/244424f14a9d3f4023d68d01b1ed0074d05efcb4
https://github.com/ethereum-optimism/contracts-v2/commit/6712904754728a0bd195bc654d977bafa6ae8fbe
https://github.com/ethereum-optimism/contracts-v2/commit/96baeba3feabdac09c9d9dd121c31bc2d2b63e7e

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 8/15

Finding Severity Likelihood Addressed

B10 Memory corruption in LibBytesUtils.slice High Low ca84d45

B11 ovmSETNONCE and ovmCREATE allows users to overflow
their nonce

Medium High No

B12 The value of a transaction is silently ignored in
OVM_ECDSAContractAccount

Low High No

B01 L1 transactions can be replayed on L2

The chainID field in the transaction passed to the execute method in the ECDSAContractAccount
is not checked, and as such L1 messages can be replayed by anyone on L2.

When combined with B02, this allows an attacker to steal from any user that reuses their L1 address
on L2 by replaying L1 transactions with insufficient gas and pocketing the excess.

The amount stolen is limited by the total amount ever spent on gas by that account on L1, and the
attacker must also pay to include the replayed transactions on L2. Nevertheless, it seems reasonable
to suggest that the attacker could profit to the tune of several hundred or thousand dollars for an
active L1 account.

B02 Relayer can provide insufficient gas for inner transaction

The gas specified in the transaction to be executed by the ECDSAContractAccount can be higher
than the gas provided by the relayer. This allows the relaying party to force any transactions to run
out of gas at will, while still incrementing the nonce and marking the transaction as executed.

As noted below, the relayer always receives gasLimit * gasPrice L2 WETH as payment,
independent of the actual gas used during execution. This means that relayers can profit by forcing
an out of gas in the execution of the relayed transaction, while still collecting the full gas payment.

In order to guarantee that the gas provided by the relayer is sufficient to execute the transaction with
decodedTx.gasLimit gas forwarded to the inner call, we recommend to add a check:

https://github.com/ethereum-optimism/contracts-v2/pull/171/commits/ca84d456898b1a9aa3c7330d7833794e79aa0ef5

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 9/15

where buffer is sufficient to cover the gas costs of all of the transactions up to and including the
CALL/CREATE which forms the entrypoint of the transaction.

B03 Account overcharges fees if the tx uses less gas then specified in gasLimit

The fee that pays gas for the transaction in the OVM_ECDSAContractAccount is computed directly
by gasLimit * gasPrice and is not dependent on the actual gas used.

This leads to users overpaying for transactions when supplying more gas then necessary.

The audit team recommends that the remaining gas should be returned back to the user after the call
is performed.

B04 Arithmetic overflow in relayer fee calculation

The calculation of the fee paid to the relayer in the ECDSAContractAccount is made using
unchecked arithmetic (uint256 fee = decodedTx.gasLimit * decodedTx.gasPrice), where
both gasLimit and gasPrice are user provided. This allows users to craft transactions that have a
very high gas price or gas limit which do not result in a corresponding fee payment to the relayer.

B05 Arithmetic underflow in gas limit calculation

A similar issue exists in the calculation of the gas limit to be used when creating a new contract. In
this case, setting a gas limit lower than 2000 results in an arithmetic underflow, and a huge gas limit
will be passed to the call to LibSafeExecutionManagerWrapper.safeCREATE.

This allows users to execute transactions at a very high cost without sufficient compensation to the
relayer.

B06 Transactions can be executed despite failing gas transfer

Lib_SafeExecutionManagerWrapper.safeREQUIRE(

 gasleft() >= safeAdd(decodedTx.gasLimit, buffer)

)

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 10/15

The call to transfer L2 WETH to pay for gas usage ECDSAContractAccount can REVERT, and
the transaction will still execute despite the relayer not being compensated for the gas usage.

The audit team recommends to require a successful transfer before executing the transaction.

B07 Incorrect casting in LibBytes32.fromAddress

In Lib_Bytes32Utils, the address _in is cast to a bytes32 as: bytes32(bytes20(_in)). The
bytes20 cast right pads its argument, which makes this casting inconsistent with the corresponding
toAddress cast: address(uint160(uint256(_in))) which assumes the argument to be left
padded.

B08 Arithmetic overflow in input validation for LibBytesUtils.slice

A lack of safemath on L168 and L100 in LibBytesUtils can cause malformed input data to
bypass the out of bounds check, which leads to slice trying to allocate 2 ^ 256 -1 bytes of
memory, for example given the input LibBytesUtils.slice(bytes(""), 1).

This will clearly always fail and consume all available gas.

Recommendation: use safemath here, and elsewhere.

As of version 0.6.0, Solidity supports slices of bytestrings natively. However, only calldata
bytestrings are currently supported. The audit team recommends using native slices wherever
possible instead of the custom implementation in LibBytesUtils.

B09 Memory corruption in Lib_RLPWriter.writeAddress

There is a memory corruption issue in Lib_RLPWriter that can cause unexpected division by zero,
resulting in an assertion violation and unexpected transaction failures.

The error (as well as the related problem in LibBytesUtils.slice) stems from an incorrect usage
of the Solidity free memory pointer.

By convention, Solidity stores the currently allocated memory size at memory locations 0x40-
0x5f, which can be retrieved by mload(0x40) in assembly. However, memory is not guaranteed to
be empty at this location as:

https://github.com/ethereum-optimism/contracts-v2/blob/bb3539bbd10c15a72a46cf4fb8d2472ef68f6322/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L168
https://github.com/ethereum-optimism/contracts-v2/blob/bb3539bbd10c15a72a46cf4fb8d2472ef68f6322/contracts/optimistic-ethereum/libraries/utils/Lib_BytesUtils.sol#L100
https://docs.soliditylang.org/en/latest/internals/layout_in_memory.html

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 11/15

Solidity always places new objects at the free memory pointer and memory is never
freed (this might change in the future).

Recommendation: always make sure to clear memory before writing.

B10 Memory corruption in LibBytesUtils.slice

The assembly code in LibBytesUtils.slice suffers from the same problem as
Lib_RLPWriter.writeAddress wherein memory is not cleared before it is being used, leading to
incorrect output and OOG errors.

The code here is copied from solidity-bytes-utils by Gonçalo Sá. The audit team notified the author
who promptly addressed the issue with this fix.

B11 ovmSETNONCE and ovmCREATE allows users to overflow their nonce

The ovmSETNONCE opcode allows users to set their nonce to an arbitrary value, including uint(-1).
It also contains a check ensuring that the new nonce is greater than the current nonce. This check is
not present if the nonce is incremented during a contract deployment with ovmCREATE.

If users set their nonce to uint(-1) and call ovmCREATE, the nonce will overflow and will end up 0.

This allows for users to replay their own transactions, which means that the OVM chain can have
multiple state transitions triggered by the same transaction hash, invalidating the assumption made
by ethereum clients that transaction hashes are sufficient to identify transactions.

B12 The value of a transaction is silently ignored in OVM_ECDSAContractAccount

The value field in the transaction passed to OVM_ECDSAContractAccount is silently ignored.
Since native ether does not exist as such on L2, a nonzero value doesn't have any effect.
Regardless, accepting nonzero values can lead to confusion and the risk of social engineering
attacks depending on how these are displayed by chain explorers, etc.

https://github.com/GNSPS/solidity-bytes-utils/
https://github.com/GNSPS/solidity-bytes-utils/pull/43

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 12/15

The audit team recommends to add a check that will call safeREVERT if the _transaction.value
field is non-zero.

Improvements

Recommendation Implemented

I01 Use safemath No

I02 Replace usage of Lib_BytesUtils.concat with abi.encodePacked No

I03 Use EIP-1967 for administering proxy implementation slots No

I04 Make use of immutable No

I05 Redundant casts in OVM_SequencerEntrypoint No

I06 Missing documentation for location of v parameter in calldata No

I07 Avoid duplication of transaction type enum No

I01 Use safemath

The OVM contracts make extensive use of unchecked arithmetic, even in calculations involving
values that can be controlled by end users. This makes reasoning about the code significantly more
challenging and unnecessarily increases the risk of an unintentional overflow (several such issues
were found as part of this engagement).

The audit team recommends replacing all uses of unchecked arithmetic with a safe math abstraction
that calls OVM_ExecutionManager.safeRevert if an overflow is detected.

I02 Replace usage of Lib_BytesUtils.concat with abi.encodePacked

Lib_BytesUtils.concat is a complex piece of hand written assembly. The same result can be
achieved by using abi.encodePacked.

The audit team recommends relying on the standard and well tested implementation in the solc
compiler and replacing all usage of Lib_BytesUtils.concat with abi.encodePacked.

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 13/15

I03 Use EIP-1967 for administering proxy implementation slots

EIP-1967 specifies a standard storage slot to be used for proxy implementation addresses.

Usage of this standardized storage slot would enable easier integration of the OVM into block
explorers or other external tooling.

I04 Make use of immutable

The following storage variables do not change after construction and can be made immutable:

OVM_StateTransitioner.preStateRoot

OVM_StateTransitioner.stateTransitionIndex

OVM_StateTransitioner.transactionhash

OVM_CanonicalTransactionChain.forceInclusionPeriodSeconds

OVM_ExecutionManager.safetyChecker

I05 Redundant casts in OVM_SequencerEntrypoint

Lines 61 and 71 of OVM_SequqncerEntrypoint contain redundant casts to uint8 for the v value
of the signature. v is already given type uint8 on line 46.

These can be safely removed.

I06 Missing documentation for location of v parameter in calldata

The documentation of the expected calldata layout for the OVM_SequencerEntrypoint is missing
an entry for the v parameter of the signature.

I07 Avoid duplication of transaction type enum

Both Lib_OVMCodec and OVM_SequencerEntryPoint contain separate definitions of semantically
equivalent transaction type enums.

The audit team recommends removing the enum from OVM_SequencerEntryPoint and using the
implementation from Lib_OVMCodec throughout.

https://eips.ethereum.org/EIPS/eip-1967
https://github.com/ethereum-optimism/contracts-v2/blob/bb3539bbd10c15a72a46cf4fb8d2472ef68f6322/contracts/optimistic-ethereum/OVM/precompiles/OVM_SequencerEntrypoint.sol#L61
https://github.com/ethereum-optimism/contracts-v2/blob/bb3539bbd10c15a72a46cf4fb8d2472ef68f6322/contracts/optimistic-ethereum/OVM/precompiles/OVM_SequencerEntrypoint.sol#L77
https://github.com/ethereum-optimism/contracts-v2/blob/bb3539bbd10c15a72a46cf4fb8d2472ef68f6322/contracts/optimistic-ethereum/OVM/precompiles/OVM_SequencerEntrypoint.sol#L46

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 14/15

Notes and Miscellanea

Use of ABIEncoderV2

The OVM contracts use the ABIEncoderV2. Although recently moved out of "experimental" status,
the V2 encoder is still less tested than the V1 encoder and has been the cause of many recent solc
bugs (ref). Usage of the V2 encoder increases the risk that a vulnerability will be introduced into the
contracts by solc during compilation.

Very high values accepted for transaction parameters

The ECDSAContractAccount accepts transactions with gasLimit and nonce of uint256, whereas
geth caps these values as the max value of a uint64.

Inconsistent ordering of transaction fields

The ordering of fields in the two transaction encodings supported by the ECDSAContractAccount
differs. This may make life slightly harder for those integrating with the OVM.

Unchecked EOA creation

The ovmCREATEOA opcode does perform any checks on the contents of the message it has been
passed, and as such allows anyone to create an EOA on the OVM on behalf of any possible public
key, by passing messageHash=0 hash.

Relayers must maintain an implementation allowlist

EOA accounts can be arbitrarily upgraded by their users, including to an implementation that does
not pay a relayer fee. Relayers should maintain a client side allowlist of known good EOA
implementations.

Use of address(0) as a sentinel value may interfere with trading workflows

Traders often use transactions to the zero address as a way to cancel pending orders.

https://docs.soliditylang.org/en/v0.7.5/bugs.html
https://crypto.stackexchange.com/questions/50279/how-should-ecdsa-handle-the-null-hash/50290#50290

12/1/21, 8:07 PM Optimism Audit Report:

https://dapp.org.uk/reports/optimism.html 15/15

The usage of transactions to zero as a sentinel value to indicate contract creation within the
ECDSAContractAccount may interfere with these workflows.

Appendix A. Bug Classifications

Severity

informational The issue does not have direct implications for functionality, but could be relevant
for understanding.

low The issue has no security implications, but could affect some behaviour in an
unexpected way.

medium The issue affects some functionality, but does not result in economically
significant loss of user funds.

high The issue can cause loss of user funds.

Likelihood

low The system is unlikely to be in a state where the bug would occur or could be
made to occur by any party.

medium It is fairly likely that the issue could occur or be made to occur by some party.

high It is very likely that the issue could occur or could be exploited by some parties.

