7 OpenZeppelin

| security

Optimism
Bridge Audit

OP

May 16th, 2022

This security assessment was prepared by
OpenZeppelin, protecting the open economy.

Table of Contents

Table of Contents 2
Summary 4
Scope 5
System Overview 5
Privileged Roles 6
Findings 6
Critical Severity
C-01 Initiate unauthorized ERC20 bridge 7
High Severity
H-01 Inverted finalization validation 8
H-02 Token refunds may use incorrect addresses 8
Medium Severity 9
M-01 Deposit refund may behave unexpectedly 9
M-02 Donated ETH appears trapped 9
M-03 Excessive gas 10
M-04 Invalid L2 sender 10
M-05 Misleading data parameter 10
M-06 Unpause functionality 11
Confusing reference to transaction sender 12
Disable implementation contracts 12
Implementation contracts have constructor 12
Nonstandard tokens 13
Warn about trapped funds 13
Zero gas limit for refund transfer 13
Unlimited message length 14

7 OpenZeppelin

Optimism Bridge Audit — Table of Contents — 2

L2StandardBridge's ETH can be stolen

"TODO" statements in codebase

Complex ERC165 implementation

Hardcoded values

Misleading, missing or unclear comments or messages
Typographical errors

Unused error

Unused functions

Unverifiable Genesis

Incomplete Documentation

Conclusion

15
15
15
16
16
17
17
17
18
18

19

7 OpenZeppelin

Optimism Bridge Audit — Table of Contents — 3

Summary

The Optimism team asked us to audit their new bridge mechanism to transfer funds and
messages between the Ethereum mainnet (L1) and the Optimism network (L2).

Type Layer 2 Total Issues 26 (0 resolved)
Timeline From 2022-04-22 Critical Severity 1 (0 resolved)
|
To 2022-05-16 ssues
High Severity 2 (0 resolved
Languages Solidity Issues ()
Medium Severity 6 (0 resolved)
Issues

Low Severity Issues 7 (0 resolved)

Notes & Additional 10 (0 resolved)
Information

7 OpenZeppelin Optimism Bridge Audit — Summary — 4

https://optimism.io/

Scope

For the majority of the audit, we reviewed the all production contracts at commit 0c05488 .

However, during the audit the Optimism team undertook a significant rewrite of the code base
to ensure backwards compatibility with the live version. To maximize the usefulness of our

audit, we spent the last few days reviewing the production contracts at commit e2da9e2 with
the understanding that we would not be able to exhaustively review new functionality that
didn't exist in the original scope. We also disregarded all issues that are no longer relevant in
the new commit.

Update: After the audit we spent another two days completing our review of the new version.
However, the codebase had advanced to commit 8cbaf@2 and is still being developed at the

monorepo. Consequently, this audit report contains references to the code base at different
stages of development. Additionally, the issues relating to the token refund functionality would
typically be described together and would likely be addressed together, but they remain distinct
to avoid discontinuities with different versions of this report.

All other parts of the system, especially L2 nodes and offchain components, were assumed to
work as documented.

System Overview

Documentation about the system is available in the specs directory of the repository.

One exception identified during the audit is that L1-to-L2 messages are not charged gas on L2.
The Optimism team is working on a metering scheme to prevent L1 users from abusing this
property to denial-of-service attack the L2 chain.

By design, a single token on Ethereum may be bridged to multiple tokens on Optimism. This
openness comes with the tradeoff that users must be careful not to bridge their tokens to
some malicious implementation on Optimism.

7 OpenZeppelin Optimism Bridge Audit — Scope — 5

https://github.com/ethereum-optimism/optimistic-specs/tree/0c054885a6fd2011503784464da1e94997251fe3/packages/contracts/contracts
https://github.com/ethereum-optimism/optimistic-specs/tree/0c054885a6fd2011503784464da1e94997251fe3/packages/contracts/contracts
https://github.com/ethereum-optimism/optimistic-specs/tree/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts
https://github.com/ethereum-optimism/optimistic-specs/tree/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts
https://github.com/ethereum-optimism/optimistic-specs/tree/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts
https://github.com/ethereum-optimism/optimistic-specs/tree/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts
https://github.com/ethereum-optimism/optimism
https://github.com/ethereum-optimism/optimistic-specs/tree/e2da9e21f449f5f5868a539d67dfd23f4d913f16/specs
https://github.com/ethereum-optimism/optimistic-specs/tree/e2da9e21f449f5f5868a539d67dfd23f4d913f16/specs

Privileged Roles

There are several privileged roles in the system that are worth noting:

e The L20utputOracle is a contract on L1 that tracks the state of the Optimism
network. It is initialized with an arbitrary genesis state and associated configuration
parameters that should correspond to an existing L2 block. The fault proof mechanism
cannot detect an incorrect initialization, which would permit arbitrary L2-to-L1 messages.

¢ Only the sequencer account can add and delete state roots from the
L20utputOracle.

e The CrossDomainMessenger contracts (on both domains) have an owner that can
pause message relays.

e The OptimismPortal, CrossDomainMessenger contracts (both domains) and the
StandardBridge contracts (both domains) are intended to be deployed behind
upgradeable proxy contracts, so the administrator can update them, changing any logic
within.

Findings

Here are our findings in order of importance.

7 OpenZeppelin Optimism Bridge Audit — Privileged Roles — 6

Critical Severity

C-01
Initiate unauthorized ERC20 bridge

The finalizeDeposit function of the L2StandardBridge contract is intended to be
invoked by the L1StandardBridge . This is validated implicitly in the first two scenarios,
when the contract attempts to finalize the ETH or ERC20 transfer. In both cases, the finalize
function is restricted by the onlyOtherBridge modifier. However, if an inconsistency is
detected, the contract will refund the deposit by sending it back over the bridge.

In the ERC20 case, this involves initiating an arbitrary token bridge operation. Since the

parameters are arbitrary and the function is not authenticated, this means that an attacker can
send L2 tokens over the bridge on behalf of a target account.

If the L2 token is not an OptimismMintableERC20, the bridge will pull the tokens before
sending them to L1. When the target has approved the bridge to spend funds (which would
occur before the target initiated a transfer), the attacker could specify their own destination
address to receive the funds on L1.

It's worth noting that even if the L2 token is an OptimismMintableERC20, the attacker can
specify an unrelated L1 token to trigger this attack. However, there are two mitigations:

¢ the user won't have a natural reason to approve an allowance for the bridge.
e there won't be funds available on L1 to release to the attacker, so this would be a pure

griefing attack.

Consider adding access control to the finalizeDeposit function to account for all three
code paths.

Update: This issue is fixed at the final commit under review. The refund code path has been
moved inside the "finalize" functions, where it is protected by the onlyOtherBridge

modifier.

7 OpenZeppelin Optimism Bridge Audit — Critical Severity — 7

https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2StandardBridge.sol#L124
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2StandardBridge.sol#L135
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L192
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L210
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2StandardBridge.sol#L156
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L271
https://github.com/ethereum-optimism/optimistic-specs/tree/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/L2/L2StandardBridge.sol#L104

High Severity

H-01

Inverted finalization validation

The OptimismPortal validates that the L2 block has been finalized before allowing a
withdrawal contained in that block to be executed. However, the inequality is inverted so it is

possible to execute withdrawals before the block is finalized. Consider correcting the
validation.

Update: This issue is fixed at the final commit under review.

H-02
Token refunds may use incorrect addresses

If an ERC20 bridge finalization fails, the bridge will attempt to perform a refund on the original

sender's chain. However, the "remote" and "local" tokens will be incorrectly flipped before

being correctly flipped when constructing the cross-domain message.

Consequently, when the refund message reaches the original chain, the _localToken will

have the value of the token address on the opposite chain. In the unlikely event this succeeds,
the wrong token will be refunded. Otherwise, refunds may be continually attempted indefinitely,
keeping the same values for localToken and remoteToken regardless of chain.

Consider maintaining the same local and remote tokens in the refund case, and instead leaving
that to within _initiateBridgeERC20Unchecked . Additionally, since the flipping is subtle,

consider including comments to draw the reviewer's attention when the tokens are flipped
intentionally.

7 OpenZeppelin Optimism Bridge Audit — High Severity — 8

https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L189
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/L1/OptimismPortal.sol#L184
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/StandardBridge.sol#L225
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/StandardBridge.sol#L228
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/StandardBridge.sol#L229-L230
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/StandardBridge.sol#L355-L356
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/StandardBridge.sol#L216
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/StandardBridge.sol#L216
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/StandardBridge.sol#L229-L230
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/StandardBridge.sol#L355-L356
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/StandardBridge.sol#L355-L356

Medium Severity

M-01
Deposit refund may behave unexpectedly

When finalizing deposits on L2, the L2StandardBridge will attempt to refund failed
transfers. However, it contains some hidden assumptions that may not hold. Specifically

e it attempts to send funds from the L1 deposit source (the from address) to the L2
deposit recipient (the to address). Since we're on L2, we cannot assume that the
~ from address on L2 orthe to address on L1 is controlled by either the depositor or
the intended recipient. The refund will attempt to transfer funds to the to address, but
on L1 instead of L2.

¢ when refunding ERC20 tokens, it will either attempt to burn token belonging to the
L2CrossDomainMessenger or retrieve them from the _ from address. Either scenario
will likely fail, but if the from address on L2 has happened to provide the necessary
allowance, its token balance will be unexpectedly deducted. Recall, it is not necessarily

associated with the original depositor or recipient. Moreover, the original token transfer
has not finalized, so the contract is "burning" tokens (strictly, reducing the available
releasable tokens) that were never credited to any address on L2.

Consider merely recording the details of failed transfers. This will make it simpler and clearer to
design a mechanism for release that includes the proper access control and validations.

M-02

Donated ETH appears trapped

The StandardBridge includes a function to donate ETH to the contract. However, there are

no functions that can spend this balance, since they all send exactly what they received in the
transaction.

Consider documenting how the ETH would be used during an upgrade or removing the
donation function.

7 OpenZeppelin Optimism Bridge Audit — Medium Severity — 9

https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2StandardBridge.sol#L153
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2StandardBridge.sol#L153
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L269
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L269
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L269
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L271
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L271
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L113

M-03
Excessive gas

When relaying a cross-domain message, the gas provided to the recipient is chosen by the
relayer, as long as it sufficiently exceeds the value chosen by the sender. This introduces an

unnecessary fragility, since the message recipient may behave differently depending on the gas
provided. In such a case, the outcome of the call is partially determined by the relayer instead
of the message sender, which is counterintuitive and possibly exploitable.

In the interest of predictability, consider sending the exact gas limit specified by the message
sender to the recipient.

M-04
Invalid L2 sender
The finalizeWithdrawalTransaction function sets the 12Sender before executing the

withdrawal, and resets it to DEFAULT L2 SENDER afterwards. The intention is to ensure that
the sender can be queried during the withdrawal.

However, if a top-level withdrawal transaction re-enters the
finalizeWithdrawalTransaction function (finalizing a different transaction), 12Sender
will be set to DEFAULT L2 SENDER after the inner withdrawal and will remain incorrectly set
during the rest of the outer withdrawal.

It is worth noting that there is a guard condition that claims to prevent reentrancy. However, it
only prevents the withdrawal transaction from directly invoking a function on the
OptimismPortal. It does not prevent a withdrawal that finalizes another valid withdrawal.

Consider enforcing non-reentrancy on the finalizeWithdrawalTransaction function.
Alternatively, if reentrancy is desired, consider caching and then resetting 12Sender to the
value it was before the call.

M-05
Misleading data parameter
The bridge functions in the StandardBridge contract, as well as the legacy versions in the

L1StandardBridge and L2StandardBridge contracts all accepta data parameter to
be sent with the transfer. However, the bridge finalization functions do not use that parameter

7 OpenZeppelin Optimism Bridge Audit — Medium Severity — 10

https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L194
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L194
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L189
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L233
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L233
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L244
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L180
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L184-L219

in any meaningful way. This can be misleading for users who expect the data to be sent to the
recipient on the other domain, and may undermine the user's intent.

Although the parameter needs to exist for backwards compatibility reasons, considering
ensuring that it is always empty.

Update: During the review of the final commit we realized this description was incomplete. In
addition to ensuring empty data values in the legacy functions, consider removing the
parameter entirely from the StandardBridge functions, which are part of a new interface and

do not need to maintain backwards compatability.

M-06
Unpause functionality

The CrossDomainMessenger contract has a mechanism for the owner to pause relays.
However, there is no corresponding mechanism to unpause the contract, which means the
pause functionality is effectively a permanent shutdown (until the contract is upgraded).

Consider introducing an unpause function or documenting the reason for the asymmetry.

7 OpenZeppelin Optimism Bridge Audit — Medium Severity — 11

https://github.com/ethereum-optimism/optimistic-specs/tree/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L92

Confusing reference to transaction sender

When the L2StandardBridge initiates a withdrawal, it uses msg.sender instead of the
_from parameter. Similarly, when the StandardBridge initiates an ERC20 bridging, it

burns tokens from msg.sender rather than the from parameter.

In all supported cases, these are the same value. Nevertheless, in the interest of local
reasoning and better encapsulation, consider using the ~from parameter, since the function
shouldn't necessarily know how it will be called.

Disable implementation contracts

The CrossDomainMessenger contract implicitly inherits the OpenZeppelin

Initializable contract to facilitate upgrades. Consider applying the initializer to the
constructor, in accordance with recommended usage, to limit the potential attack surface. Note
that the latest version of the contract includes a disableInitializers function, which

can be used instead.

Similarly, consider initializing the StandardBridge contract in its constructor with a non-zero
messenger to prevent future initializations.

Implementation contracts have constructor

The L20utputOracle and OptimismPortal both claim that they should be deployed
behind a proxy, but use a constructor to initialize their variables, which is inconsistent.

Consider removing the comment or using an initializer function instead.

7 OpenZeppelin Optimism Bridge Audit — Low Severity — 12

https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2StandardBridge.sol#L179
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L259
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L31-L33
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/v4.5.2/contracts/proxy/utils/Initializable.sol#L31
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L230
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L231
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L231
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L231
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L2OutputOracle.sol#L10
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L11

Nonstandard tokens

Since the bridge is intended to support arbitrary ERC20 tokens, and allow users to add their
own, it is worth noting that these may include non-standard ERC20 tokens. For example, users
may attempt to transfer tokens with transfer fees, rebasing tokens, tokens with blacklists, or
many other variations. Many of these properties, particularly the ones with non-standard
accounting, could undermine the basic mechanism of locking tokens in one domain, using
counterparts in the other, and then releasing them again on the original domain.

Consider explicitly documenting this risk and define which types of nonstandard tokens are
supported.

Warn about trapped funds

When sending ETH over the bridge, if the transaction on the other domain fails, the ETH may
be permanently trapped. This is an intentional design decision, because complex transactions

(that could fail) should be executed by contracts, which are assumed to know what they are
doing. However, some aspects of the architecture may be surprising to most developers:

¢ in the L2-to-L1 direction, transactions may be relayed on L1 in a different order to when
they were initiated, including two transactions from the same account. In some cases the
failed transactions can be replayed, but the initial out-of-order transaction may make
them unexecutable.

¢ developers are used to failed transactions costing them gas, but they typically retain the
value of the transaction.

This may make cross-domain ETH transfers to contracts surprisingly risky. Consider including
warning in the docstrings for the bridgeETHTo function and the corresponding legacy

functions with the same risk.

Zero gas limit for refund transfer

If a token transfer cannot be finalized, the StandardBridge initiates a refund transfer with a
gas limit of 0. This is reasonable when the refund originates on L2, because the L1 address can
choose an arbitrary gas limit when finalizing the refund. However, now that the bridge treats

7 OpenZeppelin Optimism Bridge Audit — Low Severity — 13

https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2StandardBridge.sol#L120-L123
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L133
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L133
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/StandardBridge.sol#L234
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/L1/OptimismPortal.sol#L163

both domains symmetrically, it should handle refunds that originate on L1, where the chosen

gas limit becomes part of the L2 transaction specification.

Consider choosing a non-zero gas limit that will cover a refund transaction in either direction.

Unlimited message length

The cross domain messaging infrastructure does not limit the size of the message, with the
following implications:

e the base gas calculation only considers the bottom 32 bits of the message length field

and the bottom 32 bits of the final calculation, so it may be underestimated.
e the OptimismPortal will accept an arbitrarily long deposit message, which needs to

be reproduced in the corresponding layer 2 transaction, which may be prohibitively

expensive.

Consider limiting the acceptable size of cross-domain messages.

7 OpenZeppelin Optimism Bridge Audit — Low Severity — 14

https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/L1/OptimismPortal.sol#L148
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L139
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/L1/OptimismPortal.sol#L148

L2StandardBridge's ETH can be stolen

The L2StandardBridge contains a mechanism to let users bridge ETH to L1. However, it
does not validate that the user sent sufficient ETH. If the bridge ever has any balance, possibly
as the result of a donation, any user can initiate a deposit to send that ETH to their own L1
address.

Since the Optimism team is already aware of this issue, we are simply noting it for reference.

"TODO" statements in codebase

The codebase has several "TODO" statements, which can rot and lead to code that is less
understandable, as well as leading to bugs not being fixed if they are never addressed. We
have identified at least one which is a current security issue (see [L2StandardBridge's ETH

can be stolen])

Consider tracking these tasks in the project's issues backlog. The "TODO" statements can
then be removed or updated to include the issue reference.

Complex ERC165 implementation

The OptimismMintableERC20 directly calculates the interface identifiers that it supports.

Similarly, the StandardBridge hardcodes constants that correspond to particular interface

identifiers.

For clarity and simplicity, consider defining an interface contract and using solidity's
interfaceld keyword to generate the identifier. Additionally, consider using the

introspection utilities of the OpenZeppelin contracts library where appropriate.

7 OpenZeppelin Optimism Bridge Audit — Notes & Additional Information — 15

https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2StandardBridge.sol#L181
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L113
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2StandardBridge.sol#L168
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/OptimismMintableERC20.sol#L75-L77
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L307-L309
https://docs.soliditylang.org/en/v0.8.13/cheatsheet.html?highlight=interfaceid#global-variables
https://docs.soliditylang.org/en/v0.8.13/cheatsheet.html?highlight=interfaceid#global-variables
https://github.com/OpenZeppelin/openzeppelin-contracts/tree/release-v4.6/contracts/utils/introspection

Hardcoded values

Within the codebase there are a few spots where values are hard-coded and not adequately
explained.

eIn OptimismPortal's receive function the value 100000 isusedasa gasLimit
fora callto depositTransaction.

eIn OptimismPortal's finalizeWithdrawalTransaction function the value
20000 is added to the gasLimit to ensure enough gas is being forwarded for the
following call.

e In L2TolL1MessagePasser, the receive function passes 100000 into the
initiateWithdrawal function.

e In StandardBridge, the receive function passes 200 000 into the
~initiateBridgeETH function.

*In CrossDomainMessenger's relayMessage function, the value 45000 and
40000 are hardcoded and used to ensure enough gas is included with calls.

Although in most cases, comments do explain the intent of these values enough, consider
declaring constant s for them. This will give them meaningful names and consolidate
sensitive values at the top of the files, making them easier to locate and spot-check in the
future.

Misleading, missing or unclear comments or
messages

Within the codebase, the following misleading comments were found:

® The @return comment forthe deriveOutputRoot function implies that the return
value is a boolean, when it is actually just a hash.

® The error message inthe finalizeBridgeETH function does not match the actual
error.

e In both versions of the ERC20 deposit function, the @param 12Token is an
incomplete thought.

e The to parameter of the depositETHTo and depositERC20To functions refers to
a "withdrawal" instead of a "deposit".

® The comment regarding storage slots in _verifyWithdrawalInclusion does not
specify which contract the storage slot is a part of.

7 OpenZeppelin Optimism Bridge Audit — Notes & Additional Information — 16

https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L122
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L122
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L122
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L229
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L229
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L229
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2ToL1MessagePasser.sol#L63
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2ToL1MessagePasser.sol#L63
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L2/L2ToL1MessagePasser.sol#L63
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L120
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L120
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L120
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L153
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L153
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L153
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L189
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L189
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L194
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/CrossDomainMessenger.sol#L194
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/libraries/Lib_WithdrawalVerifier.sol#L48
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/libraries/Lib_WithdrawalVerifier.sol#L48
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/StandardBridge.sol#L197
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L1StandardBridge.sol#L103
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L1StandardBridge.sol#L131
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L1StandardBridge.sol#L86
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L1StandardBridge.sol#L86
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L1StandardBridge.sol#L132
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L1StandardBridge.sol#L132
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/libraries/Lib_WithdrawalVerifier.sol#L82
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/libraries/Lib_WithdrawalVerifier.sol#L82

® The comment above the receive functionin OptimismPortal explaining that the

function is only for EOAs does not explain why contracts should not call this function.
e Several functions in the L1StandardBridge contract claim to enforce a maximum

length on the data parameter (for example, above the depositETH function), but the

particular length is not specified and there doesn't appear to be any length restriction.
e The Lib WithdrawalVerifier contract refers to an obsolete withdrawer predeploy
contract rather than the L2ToL1MessagePasser contract.

e The L20utputOracle contract's constructor is missing a @param comment for the
sequencer parameter.
e The OptimismMintableTokenFactory contract's createStandardL2Token

function is missing a @return statement.

Typographical errors
The following typographical errors were identified:
e In OptimismPortal:

o "initated" should be "initiated"
o "reentrency" should be "reentrancy"

Unused error

The NotYetFinal errorinthe OptimismPortal is unused. Consider removing it or

emitting it where relevant.

Update: This issue is fixed at the final commit under review.

Unused functions

The CrossDomainHashing library has several functions that are not used outside the library:

e | 2TransactionHash
e sourceHash
e | 2Transaction

7 OpenZeppelin Optimism Bridge Audit — Notes & Additional Information — 17

https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L118-L119
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L118-L119
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L118-L119
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L1StandardBridge.sol
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L1StandardBridge.sol
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L1StandardBridge.sol#L76-L78
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L1StandardBridge.sol#L76-L78
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/libraries/Lib_WithdrawalVerifier.sol#L70
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/libraries/Lib_WithdrawalVerifier.sol#L70
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L2OutputOracle.sol#L83
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/L2OutputOracle.sol#L83
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/OptimismMintableTokenFactory.sol#L39
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/OptimismMintableTokenFactory.sol#L39
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/universal/OptimismMintableTokenFactory.sol#L39
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L91
https://github.com/ethereum-optimism/optimistic-specs/blob/573bc0d20f0a9c4853737f8a74aa4583f64e35a7/packages/contracts/contracts/L1/OptimismPortal.sol#L179
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L21
https://github.com/ethereum-optimism/optimistic-specs/blob/e2da9e21f449f5f5868a539d67dfd23f4d913f16/packages/contracts/contracts/L1/OptimismPortal.sol#L21
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/L1/OptimismPortal.sol
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/libraries/Lib_CrossDomainHashing.sol
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/libraries/Lib_CrossDomainHashing.sol

e bytes32ToBytes
e getVersionedEncoding

Consider removing them, or documenting their intended usage within the library.

Unverifiable Genesis

The L20utputOracle is initialized with a genesis state, which should represent the state of
Optimism chain at the time of deployment. However, there is no convenient way for a user to
validate that this parameter was set correctly. In the interest of verifiability, consider emitting an
event with the genesis state.

Incomplete Documentation

During the audit the Optimism team indicated that L2-to-L1 messages are not charged gas on
L2, and they intend to introduce a metering mechanism to prevent L1 addresses from abusing
this behavior. Consider explaining this design decision and its rationale in the deposit

specification.

7 OpenZeppelin Optimism Bridge Audit — Notes & Additional Information — 18

https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/packages/contracts/contracts/L1/L2OutputOracle.sol#L80
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/specs/deposits.md
https://github.com/ethereum-optimism/optimistic-specs/blob/8cbaf02ed6a7ecbad1b86e5ea1781566031ff694/specs/deposits.md

Conclusion

1 Critical and 2 High severity issues were found. Some suggestions to improve code
cleanliness and quality were made.

7 OpenZeppelin Optimism Bridge Audit — Conclusion — 19

