
Optimism

Bedrock and

Periphery Audit

| security

September 2, 2022

This security assessment was prepared by

OpenZeppelin, protecting the open economy.

Table of Contents

Table of Contents __ 2

Summary ___ 4

Scope __ 5

System Overview __ 6

Security assumptions __ 7

Findings __ 7

Medium Severity ___ 8

M-01 Asymmetric failure behavior of ERC721 bridges 8

M-02 Confusing deprecated OptimismMintableERC20 interface considerations 9

M-03 ETH can be sent to undeliverable recipient 9

M-04 Unsatisfiable gasLimit values could lead to frozen assets 10

M-05 Incomplete backwards compatibility 11

M-06 Lack of input validation 11

M-07 CrossDomainMessenger allows sending messages to unrelayable addresses 12

M-08 Upgradeability inconsistencies 13

Low Severity __ 15

L-01 Documentation could be improved 15

L-02 Multiple OpenZeppelin contracts versions in use 15

L-03 Not inheriting supported interfaces 16

L-04 Standard Bridge does not support tokens with transfer fees 16

L-05 Auto withdrawal transactions can be misleading 17

L-06 Circumventable requirement that owner and proposer are distinct 17

L-07 Deprecated math library 18

L-08 ERC721 bridge contracts not using safeTransferFrom 18

L-09 Misleading inline documentation 19

L-10 Specs do not cover all aspects of current implementation 20

L-11 Potentially confusing naming 20

L-12 Potential revert-inducing overflow 21

L-13 Duplicated code 21

L-14 Variables missing the immutable keyword 22

Optimism Bedrock and Periphery Audit − Table of Contents − 2

Notes & Additional Information __ 23

N-01 Functions fail later than required 23

N-02 Lack of indexed parameters in event 23

N-03 Require used for condition "that will never happen" 24

N-04 Confusing else conditions 24

N-05 Inconsistent approach to auto-refunding failed token transfers 25

N-06 Inconsistent terminology 25

N-07 Unexplained literal values 26

N-08 Easily bypass-able requirement 26

N-09 Typographical errors 27

N-10 Undocumented implicit approval requirements 27

N-11 Unused inherited contract 28

N-12 Virtual functions never overridden 28

Conclusions ___ 29

Optimism Bedrock and Periphery Audit − Table of Contents − 3

Type L1/L2 Bridge

Timeline From 2022-07-18

To 2022-08-12

Languages Solidity

Total Issues 34 (18 resolved)

Critical Severity

Issues
0 (0 resolved)

High Severity

Issues
0 (0 resolved)

Medium Severity

Issues
8 (5 resolved)

Low Severity Issues 14 (7 resolved)

Notes & Additional

Information
12 (6 resolved)

Summary

Optimism Bedrock and Periphery Audit − Summary − 4

Scope

We audited the "ethereum-optimism/optimism" repository at the

"93d3bd411a8ae75702539ac9c5fe00bad21d4104" commit.

In scope were the following contracts:

packages/contracts/contracts/chugsplash/L1ChugSplashProxy.sol

packages/contracts/contracts/libraries/bridge/

CrossDomainEnabled.sol

packages/contracts/contracts/libraries/constants/

Lib_PredeployAddresses.sol

packages/contracts-bedrock/contracts/L1/

L1CrossDomainMessenger.sol

packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol

packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol

packages/contracts-bedrock/contracts/L1/OptimismPortal.sol

packages/contracts-bedrock/contracts/L1/ResourceMetering.sol

packages/contracts-bedrock/contracts/L2/

L2CrossDomainMessenger.sol

packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol

packages/contracts-bedrock/contracts/L2/L2ToL1MessagePasser.sol

packages/contracts-bedrock/contracts/libraries/Hashing.sol

packages/contracts-bedrock/contracts/universal/

CrossDomainMessenger.sol

packages/contracts-bedrock/contracts/universal/Proxy.sol

packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol

packages/contracts-bedrock/contracts/universal/Semver.sol

packages/contracts-bedrock/contracts/universal/StandardBridge.sol

packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol

packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Optimism Bedrock and Periphery Audit − Scope − 5

https://github.com/ethereum-optimism/optimism/
https://github.com/ethereum-optimism/optimism/commit/93d3bd411a8ae75702539ac9c5fe00bad21d4104

System Overview

This audit covers a newly added ERC721 bridge as well as some updates made to the

standard bridge.

The ERC721 bridge is a pair of smart contracts that accept deposits of ERC721 tokens on L1

and mints a representation of them on L2. The bridge uses the underlying Optimism cross-

domain messaging system to relay transactions between L1 and L2. In order to use the

ERC721 bridge, the assets have to be initially minted on L1 and bridged over to L2. It does not

support L2 native ERC721 bridging over to L1.

The standard bridge supports both ETH and ERC20 tokens. It accepts deposits on L1 and

mints representation of these tokens on L2. It supports L1 natively minted tokens that are

bridged to L2, and L2 native tokens bridged to L1 if they are OptimismMintable . These

bridges are permissionless, meaning users can bridge any supported assets. However, not all

asset types are natively supported (e.g., tokens with transfer fees are explicitly unsupported). It

is up to users to ensure that any assets they intend to bridge are legitimate and supported as

failing to do so could lead to loss of funds.

The system also fully supports bridging ETH between layers either via the standard bridge or

even at a layer beneath that using the Optimism Portal contract.

Optimism Bedrock and Periphery Audit − System Overview − 6

Security assumptions

The system is designed with some trusted entities and privileged roles. We assume these are

trustworthy during our audit, however they are still worth pointing out.

Some of the contracts e.g. standard bridges, ERC721 bridges, cross-domain

messengers, and the Optimism portal are designed to be upgradable. A trusted admin is

capable of upgrading these contracts and all logic involved.

Cross-chain messages are relayed by off-chain nodes which play a critical role in the

system. How these are operated is out of the scope of this audit, however any malicious

acts, delays or failures could impact the overall bridging process.

The cross-domain messenger contracts on both L1 and L2 can have message relaying

paused by their owner.

The owner of the L2OutputOracle contract can delete block proposals submitted by

node runners.

Findings

Here we present our findings.

•

•

•

•

Optimism Bedrock and Periphery Audit − Security assumptions − 7

Medium Severity

M-01 Asymmetric failure behavior of ERC721

bridges

The L1ERC721Bridge and L2ERC721Bridge contracts are not symmetric in the way they

deal with failing cross-domain token transfers.

Specifically, if a layer one (L1) "native" ERC721 token is sent from the L1ERC721Bridge to

the L2ERC721Bridge on the other domain, the layer two (L2) bridge checks that the local

token supports the IOptimismMintableERC721 interface and that it identifies itself as

being mapped to the expected remote token. If either of these conditions do not hold, then an

"auto withdrawal" message is sent back to L1 to facilitate refunding the ERC721 token to the

original sender on L1.

This fail-safe behavior is not present within the L1ERC721Bridge contract's

finalizeBridgeERC721 function. An IOptimismMintableERC721 token could be

created natively on L2, and it would pass all checks required to initiate a bridge to L1.

However, upon arrival at the L1 bridge, there is no support for IOptimismMintableERC721

tokens. Since the token was never deposited into the L1 bridge, and given that it is L2 native,

the finalization transaction would always fail.

A cross-chain transfer of an L2 "native" ERC721 that fails during transfer finalization on L1

does not automatically create a withdrawal message to send the token back to the original

sender on L2. Hence, such transfers would effectively leave the ERC721 token completely

inaccessible on either L1 or L2.

Consider making the bridge behavior more symmetric by adding a mechanism to automatically

refund ERC721 tokens bridged from L2 to L1 when they encounter permanent conditions that

prevent their successful transfer. Alternatively, consider heavily documenting the lack of

symmetry to avoid user confusion and the unintentional locking of assets.

Update: Fixed by commits 0a0eeeba1bd7d5b30bd2e9b6fad5792436d69f42 and

efc31f3b2131d6d166bf7ebe5c206e532ec67cac in pull request 20. The

L1ERC721Bridge has been updated to refund assets if a bridge transaction fails to finalize.

Optimism Bedrock and Periphery Audit − Medium Severity − 8

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L198-L204
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L211-L236
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L178
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L178
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/0a0eeeba1bd7d5b30bd2e9b6fad5792436d69f42
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/0a0eeeba1bd7d5b30bd2e9b6fad5792436d69f42
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/efc31f3b2131d6d166bf7ebe5c206e532ec67cac
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/efc31f3b2131d6d166bf7ebe5c206e532ec67cac
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/

M-02 Confusing deprecated

OptimismMintableERC20 interface

considerations

In the StandardBridge contract, the internal _isOptimismMintableERC20 function is

meant to check that a provided token is an OptimismMintableERC20 .

The codebase also seems to indicate that, going forward, an OptimismMintableERC20

token may come in two variations, the IL1Token type (which exposes the l1Token function

which is being depreciated) and the IRemoteToken type which exposes the remoteToken

function that replaces the l1Token function.

Currently, the _isOptimismMintableERC20 function only checks for the deprecated

interface. This means all "new" style tokens that only conform to the IRemoteToken interface

would not be usable with the StandardBridge. Additionally, the _isCorrectTokenPair

function only works with IL1Token interface type tokens.

The OptimismMintableERC20 contract supports both interfaces, indicating that the legacy

IL1Token interface should continue to be available.

To clarify the IL1Token interface deprecation status, consider adding more extensive

documentation that covers what interfaces external contracts should support. To support

tokens that only implement the IRemoteToken interface, if permitted, consider checking for

this interface type in addition to the deprecated interface type.

Update: Fixed by commits 8257593f8e1f545151c66b2677e356dd09ed0060 and

3bef594f30743613a14fdd4c515c2bd010f313a9 in pull request 4.

M-03 ETH can be sent to undeliverable recipient

The StandardBridge contract is the base contract for the domain-specific standard bridge

contracts. The standard bridge contracts facilitate the cross-domain transmission of ETH and

ERC20 tokens.

The StandardBridge contract does not validate within the bridgeETHTo function that the

provided _to address is not the bridge contract on the other domain (otherBridge).

However, when it arrives at the standard bridge on the other domain the

finalizeBridgeETH function requires that _to != (current domain bridge

Optimism Bedrock and Periphery Audit − Medium Severity − 9

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L515
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L515
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/SupportedInterfaces.sol#L15
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/SupportedInterfaces.sol#L15
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/OptimismMintableERC20.sol#L104
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/SupportedInterfaces.sol#L7
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/SupportedInterfaces.sol#L7
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L516
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L516
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L532
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L532
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/OptimismMintableERC20.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/OptimismMintableERC20.sol
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/4/commits/8257593f8e1f545151c66b2677e356dd09ed0060
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/4/commits/8257593f8e1f545151c66b2677e356dd09ed0060
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/4/commits/3bef594f30743613a14fdd4c515c2bd010f313a9
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/4/commits/3bef594f30743613a14fdd4c515c2bd010f313a9
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/4/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L192-L198
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L192-L198
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L33
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L33
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L277
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L277
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L284
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L284

address) . As a result, any of the ETH sent in such a transaction would be undeliverable to

the standard bridge, and irretrievable by the sender.

Consider disallowing ETH to be sent across the bridge if the _to address is the address of the

other bridge. Alternatively, consider documenting the result of such a transaction.

Update: Fixed in commit 41ae72d0007ec10a1260603d40eadb4f55dc8a95 in pull request

27 where extra documentation has been added to warn users about such transactions.

M-04 Unsatisfiable gasLimit values could lead

to frozen assets

Throughout the codebase whenever a cross-domain transaction is initiated, the initiating

function generally accepts a gasLimit (or similarly named) value. This value is meant to

indicate the minimum amount of gas that should be provided to yield a successful execution of

the transaction on the target domain. This is necessarily a user provided value, because the

exact execution costs of a message on the target domain are not programmatically

computable.

However, there is no explicitly enforced upper bound on this value at the time a cross-domain

transaction is being initiated. Where there are bounds placed on this value, they are implicit.

For example, the metering modifier applied to the depositTransaction function of the

OptimismPortal contract sets an upper bound on the _gasLimit for all cross-domain

transactions from the portal's domain (L1) to the target domain (L2). Transactions that pass

through a CrossDomainMessenger contract also have an implicit upper bound on

_gasLimit as a result of the baseGas function call and the fact that it will revert if the

minimum gas limit is too large.

However, for lower-level transactions that are flowing in the other direction, from L2 to L1, there

is no upper bound, implicit or otherwise, on the gasLimit value.

This is problematic because it can result in cross-domain transactions being created that are

unintentionally unexecutable on L1. If a gasLimit is specified that is larger than the number

of ETH in existence, for instance, then it could never pass the finalization check requiring that

at least gasLimit amount of gas be made available for transaction execution.

In practice, a much smaller gasLimit could cause transaction finalization issues for most

users because they would not have the funds to satisfy excessively large gas requirements.

Optimism Bedrock and Periphery Audit − Medium Severity − 10

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L284
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L284
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/41ae72d0007ec10a1260603d40eadb4f55dc8a95
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/41ae72d0007ec10a1260603d40eadb4f55dc8a95
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L246
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L246
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L318
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L318
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2ToL1MessagePasser.sol#L90
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L189

Consider setting explicit upper bounds on the user-provided gasLimit values for all cross-

domain transactions. Alternatively, consider modifying the finalization mechanism so that is

better capable of handling unsatisfiable gasLimit values.

Update: Not fixed. The Optimism team's response:

We have not yet encountered this issue while operating our existing bridges, and will

decline to make this change in favor of reduced complexity.

M-05 Incomplete backwards compatibility

The standard bridge contracts are designed to maintain compatibility with contracts that were

designed to integrate with previous implementations of the bridge. However the

L2StandardBridge contract does not emit a DepositFailed event when a

finalizeDeposit call fails. Instead, it always emits a DepositFinalized event. It emits

a different, albeit similarly named, ERC20BridgeFailed event only if the child call to

finalizeBridgeERC20 fails. This could be misleading for legacy off-chain applications

monitoring bridge activity.

To fully maintain backwards compatibility, consider emitting a DepositFailed event when a

finalizeDeposit call fails.

Update: Fixed in commit 730a9c74496aaf1dd46953719f8a5c337e94c225 in pull request

21.

M-06 Lack of input validation

There is a general lack of input validation throughout the codebase, especially in initializers and

constructors. Some examples are:

In the L1ERC721Bridge and L2ERC721Bridge contracts, the _messenger and

_otherBridge address inputs are not subject to any validation in the respective

contract's constructor nor in its initialize function.

In the L1StandardBridge contract, the _messenger address input is not subject to

any validation in the constructor , the initialize function, nor in the inherited

__StandardBridge_init function.

In the L2StandardBridge contract, the _otherBridge address input is not subject

to any validation in the constructor , the initialize function, nor in the inherited

__StandardBridge_init function.

•

•

•

Optimism Bedrock and Periphery Audit − Medium Severity − 11

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L72
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L72
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L156
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L156
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L330
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L330
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L154
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L305
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L305
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/21/commits/730a9c74496aaf1dd46953719f8a5c337e94c225
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/21/commits/730a9c74496aaf1dd46953719f8a5c337e94c225
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/21/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/21/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L78-L95
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L78-L95
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L92-L109
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L92-L109
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol#L93
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol#L93
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol#L251
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol#L251
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L376
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L376
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L86
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L86
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L164
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L164
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L376
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L376

In the L2OutputOracle contract, the majority of the arguments to the constructor

and to the initialize function are not subject to any validation.

In the OptimismPortal contract, neither the _l2Oracle address input nor the

_finalizationPeriodSeconds integer input is subject to any validation in the

constructor .

Additionally, several of the functions that initiate cross-domain transfers allow zero-value

inputs. For instance:

In the StandardBridge contract, neither the bridgeETH nor the bridgeETHTo

functions validate that user-provided inputs are non-zero. In the case of the latter

function, a zero-value _to address does not seem like it should be valid input, for

example.

In the L1ERC721Bridge contract, the bridgeERC721 and bridgeERC721To

functions do not validate for non-zero address inputs. This is potentially problematic for

the _to and _remoteToken address inputs, for example.

These lists are non-exhaustive; the lack of input validation throughout the codebase is

extensive.

The lack of validation on user-controlled parameters may result in erroneous or failing

transactions and could lead to the unintentional loss of user assets. Note also that some user

interfaces may default to sending null parameters if none are specified and this could be

particularly problematic for users.

To avoid the potential for erroneous values to result in unexpected behaviors or wasted gas,

consider adding input validation for all user-controlled input, including administrator-only

functions.

Update: Partially fixed in commit 3505f204f84b64acf5bcd7a1518e5e0000174f4b in pull

request 20. No relevant changes were made to the L2OutputOracle and

OptimismPortal contracts cited in issue.

M-07 CrossDomainMessenger allows sending

messages to unrelayable addresses

The CrossDomainMessenger contract allows anyone to send a message to any _target

address via the sendMessage function. There are no restrictions on the _target at the

point of cross-domain message initiation. However, there are restrictions on that _target

address at the point of message finalization. This can lead to unrelayable transactions.

•

•

•

•

Optimism Bedrock and Periphery Audit − Medium Severity − 12

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L120
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L120
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L268
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L268
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L101
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L101
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L175
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L175
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L192
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L192
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L108
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L108
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L142
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L142
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/3505f204f84b64acf5bcd7a1518e5e0000174f4b
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/3505f204f84b64acf5bcd7a1518e5e0000174f4b
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L171
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L171

For instance, a valid cross-domain message can be created on layer one (L1) with a _target

address that corresponds to the other messenger address (otherMessenger) on layer 2 (L2).

After this message makes its way over to L2, the L2 cross-domain messenger will attempt to

relay the message. However, the transaction will always revert because the message's

_target address is the L2 cross-domain messenger itself which is a blocked system address

on L2.

The same scenario will be true of any other system address set for the domain, including

Predeploys.L2_TO_L1_MESSAGE_PASSER for L2 and the cross domain messenger

contract for L1.

Consider disallowing cross-domain messages to be created if the _target address is an

unrelayable address on the other domain. If this is not possible, then consider auto-refunding

these kinds of unrelayable transactions or heavily documenting that such messages will be

unrelayable.

Update: Fixed in commit 5e2f6b3ba642af68919a79b52eef15e6be2517ce in pull request

27 where extra documentation has been added to warn users about this behavior.

M-08 Upgradeability inconsistencies

Throughout the codebase, many of the contracts are meant to be upgradeable. This is

accomplished via means of proxy contracts in conjunction with proxy admin contract(s).

However, the upgradeable contracts throughout the codebase are not consistent about

reserving storage slots for future upgrades. In particular, the use of storage "gaps" to reserve

storage slots and to avoid potential storage slot collisions in the event that contract storage

requirements change in the future is inconsistent. Some top-level upgradeable contracts and,

more importantly, the contracts they inherit from, safely reserve storage slots via "gap" arrays

while others do not. This is problematic because inconsistency around the storage layout of

upgradeable contracts can make upgrades more error prone and can lead to missteps that

may result in unpredictable, undesirable outcomes after the contracts are upgraded.

Several contracts that are inherited by upgradeable contracts do not reserve any storage

space for their own future upgrades. For instance, the CrossDomainMessenger ,

StandardBridge , and CrossDomainEnabled contracts do not reserve storage for

upgrades. On the other hand, the ResourceMetering contract does reserve storage for

upgrades.

Most of the top-level contracts (contracts which no other contracts currently inherit from) do

not reserve storage gaps. This can be safe if the upgrade strategy will only ever add additional

Optimism Bedrock and Periphery Audit − Medium Severity − 13

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L247
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2CrossDomainMessenger.sol#L35-L37
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2CrossDomainMessenger.sol#L35-L37
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1CrossDomainMessenger.sol#L37
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1CrossDomainMessenger.sol#L37
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/5e2f6b3ba642af68919a79b52eef15e6be2517ce
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/5e2f6b3ba642af68919a79b52eef15e6be2517ce
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts/contracts/libraries/bridge/CrossDomainEnabled.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts/contracts/libraries/bridge/CrossDomainEnabled.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/ResourceMetering.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/ResourceMetering.sol

storage variables to these contracts. However, this is inconsistent throughout the codebase.

The OptimismPortal contract is one such contract that does use a storage gap.

Consider standardizing the use of storage gaps in all contracts that may be upgraded,

especially contracts that may be upgraded and are inherited by other contracts. Further,

consider more thoroughly documenting the intended upgrade process, which contracts are

meant to be upgradable and which are not, and any assumptions about the storage layouts of

contracts that are meant to be upgradable.

Update: Partially fixed in commit def7e8942739c2a78192246ff196ead158797cf3 in pull

request 23. No relevant changes made to the CrossDomainEnabled contract cited in the

issue.

Optimism Bedrock and Periphery Audit − Medium Severity − 14

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/23/commits/def7e8942739c2a78192246ff196ead158797cf3
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/23/commits/def7e8942739c2a78192246ff196ead158797cf3
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/23/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/23/

Low Severity

L-01 Documentation could be improved

Certain parts of the deposit documentation could be improved in order to better clarify the

deposit process.

For example, in the Execution section of the document, when a new EVM call frame

targeting the to address is created, the CALLER and ORIGIN terms should be clarified as

being synonymous for msg.sender and tx.origin , respectively. The document should

also clarify that because of that behavior, any tx.origin == msg.sender checks would

not be checking that an EOA caller during a deposit transaction. Instead, the check could only

be useful for identifying the first call in the L2 deposit transaction.

To favor explicitness and help users understand the transaction bridging process better,

consider being more verbose in the documentation.

Update: Fixed in commit 25f3e27d044f90bc71124ad0d3581b99f6d04dcd in pull request

27 where additional clarifying documentation has been added.

L-02 Multiple OpenZeppelin contracts versions in

use

Throughout the codebase there are different versions of OpenZeppelin contracts being used.

For example, the contracts-periphery folder uses 4.6.0 while the contracts folder

uses 4.3.2 and contracts-bedrock folder uses 4.5.0 and 4.5.2.

To avoid unexpected behaviors and to increase the overall consistency of the codebase,

consider updating the codebase to use the latest OpenZeppelin contracts.

Update: Partially fixed in commit 1ff3e03380d1f7e200ac44eec28b8b3e15f12a1a in pull

request 22. The OpenZeppelin contracts version was updated only for the bedrock contracts.

Optimism Bedrock and Periphery Audit − Low Severity − 15

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/specs/deposits.md#execution
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/25f3e27d044f90bc71124ad0d3581b99f6d04dcd
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/25f3e27d044f90bc71124ad0d3581b99f6d04dcd
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/package.json#L66-L67
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/package.json#L66-L67
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts/package.json#L76-L77
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts/package.json#L76-L77
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts/package.json#L76-L77
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/package.json#L40-L41
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/package.json#L40-L41
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/22/commits/1ff3e03380d1f7e200ac44eec28b8b3e15f12a1a
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/22/commits/1ff3e03380d1f7e200ac44eec28b8b3e15f12a1a
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/22/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/22/

L-03 Not inheriting supported interfaces

The OptimismMintableERC20 contract exposes support for three interfaces via the

supportsInterface function in accordance with the ERC165 standard.

The supported interfaces are IERC165 , IL1Token and IRemoteToken . However, the

contract does not inherit any of these interfaces.

In favor of explicitness, to increase the readability of the codebase, and to benefit from

compiler-level error checking, consider updating the OptimismMintableERC20 contract so

that it inherits from all of the interfaces it supports.

Update: Not fixed. The Optimism team's response:

These interfaces were created for the specific purpose of making the interface matching

code cleaner, and we do not feel that inheriting will increase clarity for users.

L-04 Standard Bridge does not support tokens

with transfer fees

The StandardBridge contract is designed without support for any tokens with a transfer

fee. In fact, a relevant brief disclaimer appears in the L2StandardBridge contract, but it is

absent from the L1StandardBridge contract.

Any bridging transactions involving these unsupported tokens will not revert. Instead, they will

potentially put the bridge in an under-collateralized position. The undercollateralization would

disproportionately impact the last withdrawing user/users, who would essentially pay all of the

transfer fees for all prior users.

Consider using the delta of the balance before and after deposit to support fee-charging

tokens within the internal accounting logic. Alternatively, consider reverting any bridging

attempts involving token types with transfer-related accounting behaviors that are known to be

unsupported.

Update: Partially fixed in commit 76b8ff65fab5cf73cd1ee07b6e654d9fcf18b787 in pull

request 27 where extra documentation has been added in the L1StandardBridge contract

to warn users about potential risk.

Optimism Bedrock and Periphery Audit − Low Severity − 16

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/OptimismMintableERC20.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/OptimismMintableERC20.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/OptimismMintableERC20.sol#L95
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/OptimismMintableERC20.sol#L95
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L17
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L17
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L450
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/76b8ff65fab5cf73cd1ee07b6e654d9fcf18b787
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/76b8ff65fab5cf73cd1ee07b6e654d9fcf18b787
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/

L-05 Auto withdrawal transactions can be

misleading

When a cross-domain transaction fails, it is sometimes bounced back to the origination chain

in the form of an auto-withdrawal transaction. Transactions involving ERC20 cross-domain

transfers are auto-refunded by the StandardBridge if the transfer is not successful.

Transactions involving ERC721 tokens are auto-refunded back to L1 if the L2 token is not as

expected.

In all cases, the auto-refunded transactions are created by flipping the from and to

addresses associated with the original transaction. This is somewhat intuitive, because the

"refund" should go back to the address that it was originally from.

However, what is less intuitive is that the new from address on the refund transaction is an

address that never had control of the token involved. Indeed, the auto-withdrawal transaction

itself is precisely because the transfer to the to address did not successfully complete.

And yet, auto-withdrawal transactions are sent back to the originating chain with no indication

that they are distinct from any other transactions. Without any such indication that these

transactions are auto-withdrawal transactions, off-chain observers could mistakenly believe

that the from address had control of the token involved in the transaction.

In reality, the from address is completely arbitrary - it could, for instance, be the zero address

or any other arbitrary address selected by the original transaction sender. Although this does

not undermine the security of the cross-domain bridges, it is misleading and prone to

misinterpretation.

Consider making auto-withdrawal transactions distinct from regular transactions. Also consider

making these auto-withdrawal transactions from the same address that initiated the

corresponding original transaction to better convey which addresses were actually ever in

control of the token.

Update: Fixed in commit 45766d702daffd8a1837dc8e4c8ffce497e3d4b8 in pull request

20.

L-06 Circumventable requirement that owner

and proposer are distinct

The L2OutputOracle contract has a changeProposer function that lets the contract

owner update the proposer address.

Optimism Bedrock and Periphery Audit − Low Severity − 17

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L315-L331
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L315-L331
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L211-L228
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L211-L228
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/45766d702daffd8a1837dc8e4c8ffce497e3d4b8
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/45766d702daffd8a1837dc8e4c8ffce497e3d4b8
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L285
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L285
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L52
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L52

It enforces the requirement that even the contract owner cannot set the proposer to the

owner address.

However, this requirement can easily be circumvented by the owner. Because the contract

inherits from the OpenZeppelin OwnableUpgradeable contract, it also inherits a public

transferOwnership function that would allow the owner to set the owner address to the

proposer address.

Relatedly, there is no requirement in the contract's initializer function that the owner

and proposer are distinct.

If the requirement that the owner and proposer addresses are distinct is important,

consider overriding the inherited transferOwnership function to enforce this requirement

and use this same function within the initializer function as well. Otherwise, consider

documenting why the requirement is needed in one case but not the others.

Update: Fixed in commit ba0857dca0c75c6cea0174759b925da6ab6dc141 in pull request

24.

L-07 Deprecated math library

The parent npm package of the FixedPointMathLib that is imported by the

ResourceMetering contract has been deprecated. The library is still being actively

maintained within this github repo.

Although the deprecated npm package and the maintained repo do not currently diverge with

regard to the logic of the FixedPointMathLib , this could change as the maintained version

is iterated upon. Consider updating the implementation so that it is not dependent on the

deprecated npm package.

Update: Not fixed.

L-08 ERC721 bridge contracts not using

safeTransferFrom

Cross-chain ERC721 transfers back to the Ethereum network (L1) are finalized via the

finalizeBridgeERC721 function of the L1ERC721Bridge contract. There, the ERC721

token is transferred to the intended recipient's (_to) address via the ERC721 token's

transferFrom method.

Optimism Bedrock and Periphery Audit − Low Severity − 18

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L292
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/OwnableUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/OwnableUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/OwnableUpgradeable.sol#L74
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/OwnableUpgradeable.sol#L74
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L273
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L273
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/24/commits/ba0857dca0c75c6cea0174759b925da6ab6dc141
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/24/commits/ba0857dca0c75c6cea0174759b925da6ab6dc141
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/24/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/24/
https://www.npmjs.com/package/@rari-capital/solmate
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/ResourceMetering.sol#L7
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/ResourceMetering.sol#L7
https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L178
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L178
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L182
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L182
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L196
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L196

In the event that the recipient is a smart contract, it may not have a mechanism to interact with

ERC721 tokens. This could result in the token becoming unmovable after this transfer. The

ERC721 spec attempts to mitigate this scenario via the safeTransferFrom method, which

provides additional checks to ensure that the recipient of the transfer can safely accept

ERC721 tokens.

Consider using the ERC721 safeTransferFrom method unless there are specific reasons

why its additional safety checks would not be desirable. In the case that safeTransferFrom

is not desirable, consider explicitly documenting the reason why.

Update: Fixed in commit e0556413f0d3d1e6bab3bfb2864bca02c9c37c66 in pull request

20.

L-09 Misleading inline documentation

There are instances of potentially misleading inline documentation that should be fixed. For

instance:

The NatSpec @notice for the successfulMessages mapping is the same as that

for receivedMessages mapping. It makes sense for the latter, but not the former.

The NatSpec @notice for the Standard Bridge contracts says that "ERC20 tokens sent

to {this domain} are escrowed within this contract" (here and here); this is not strictly

true. OptimismMintableERC20 tokens are not escrowed.

The NatSpec @notice tag for computeL2Timestamp errantly says that it "Returns a

null output proposal if none is found."

Clear inline documentation is fundamental for outlining the intentions of the code. Mismatches

between the inline documentation and the implementation can lead to serious misconceptions

about how the system is expected to behave. Consider clarifying the referenced inline

documentation to avoid confusion for developers, users, and auditors alike.

Update: Fixed in commit 0f8057e5979b5b947ce99ed32dd3b7fd60c563da in pull request

27.

•

•

•

Optimism Bedrock and Periphery Audit − Low Severity − 19

https://eips.ethereum.org/EIPS/eip-721
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/e0556413f0d3d1e6bab3bfb2864bca02c9c37c66
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/e0556413f0d3d1e6bab3bfb2864bca02c9c37c66
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L78
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L78
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L101-L104
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L101-L104
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L14
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol#L12
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L313
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L313
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L309
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L309
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/0f8057e5979b5b947ce99ed32dd3b7fd60c563da
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/0f8057e5979b5b947ce99ed32dd3b7fd60c563da
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/

L-10 Specs do not cover all aspects of current

implementation

The deposits specification document is incomplete with regard to the current implementation

of the codebase. For instance:

The specification says that "deposited transactions" should contain an additional byte

that indicates the version of the transaction encoding, but no such byte is encoded in the

encodeDepositTransaction function.

The UserDepositTransaction struct has l1BlockHash and logIndex attributes

that are not covered in the specification.

To increase the overall readability and maintainability of the codebase, consider bringing the

specification in line with the current implementation.

Update: Not fixed.

L-11 Potentially confusing naming

There are instances in the codebase where naming could be improved or where naming

practices could be more consistent.

For instance, in the L1ChugSplashProxy contract the onlyWhenNotPaused modifier is

actually concerned with whether or not there is an upgrade in progress rather than some sort

of arbitrary "pause". A name such as onlyWhenNotUpgrading would better reflect the

actual implementation.

A more general issue around naming is that domain agnostic names ("localToken" rather than

"L1Token", for instance) are used for inconsistent ends. In a contract that functions as the base

contract for all domains, such as the StandardBridge contract, domain agnostic names can

make sense. There is a trade off in terms of readability, because names with relative terms

require more mental overhead, but the benefit in such a case is that much less code is

duplicated. In these cases, the ends (code reuse) can justify the means (harder to read code).

However, in the L1ERC721Bridge and the L2ERC721Bridge contracts, there are domain

agnostic terms that are not attributable to code reuse. Thus, they are harder to read and

understand without any benefit.

Consider renaming elements of the codebase so that they are as easy to understand as

possible. Further, as suggested elsewhere in this report, consider reusing code that is domain

•

•

Optimism Bedrock and Periphery Audit − Low Severity − 20

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/specs/deposits.md
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/specs/deposits.md#L55-L56
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/specs/deposits.md#L55-L56
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/libraries/Encoding.sol#L21-L36
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/libraries/Encoding.sol#L21-L36
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/libraries/Types.sol#L34-L44
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/libraries/Types.sol#L34-L44
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/libraries/Types.sol#L42
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/libraries/Types.sol#L42
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/libraries/Types.sol#L43
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/libraries/Types.sol#L43
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/specs/deposits.md#L232
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/legacy/L1ChugSplashProxy.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/legacy/L1ChugSplashProxy.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/legacy/L1ChugSplashProxy.sol#L47
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/legacy/L1ChugSplashProxy.sol#L47
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol

agnostic as much as possible. If reuse is undesirable, then consider renaming the relevant

domain agnostic code to be domain specific so that it is easier to understand.

Update: Partially fixed in commit 8603864482eb734cbeb79e7b5fc994f16685b577 in pull

request 10. The Optimism team's response:

We have only one Chugsplash contract deployed, and won’t deploy any new ones, so

prefer not to modify it. Regarding direction agnostic code-reuse, this was fixed for L13.

L-12 Potential revert-inducing overflow

The baseGas function in the crossDomainMessenger contract is responsible for

computing the amount of gas required to ensure that a given message will be received on the

other chain without running out of gas.

Inside this function the return value, _minGasLimit , and

MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR are all of type uint32 .

Given that MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 1016 , this leaves

_minGasLimit with a max value around 4.2 million before the function encounters revert-

inducing overflows on line 321.

Although this may be unlikely given the current state of block-level gas considerations and the

fact that current message passing logic is not that gas heavy, considering fully documenting

this design limitation.

Update: Fixed in commit bdfad3cd03ce163d2cb9accc6f0ccb1e3e134d39 in pull request

30.

L-13 Duplicated code

There are instances of duplicated code between the L1ERC721Bridge and

L2ERC721Bridge contracts. Duplicated code can lead to issues later in the development

lifecycle and leaves the project more prone to the introduction of errors. Such errors can

inadvertently be introduced when functionality changes are not replicated across all instances

of code that should be identical. Examples of duplicated code across these two contracts

include the following:

The ERC721BridgeInitiated event (L1, L2)

The ERC721BridgeFinalized event (L1, L2)

•

•

Optimism Bedrock and Periphery Audit − Low Severity − 21

https://github.com/ethereum-optimism/optimism-audit-fixes/pull/10/commits/8603864482eb734cbeb79e7b5fc994f16685b577
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/10/commits/8603864482eb734cbeb79e7b5fc994f16685b577
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/10/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/10/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L318
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L318
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L43
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L43
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L321
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/30/commits/bdfad3cd03ce163d2cb9accc6f0ccb1e3e134d39
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/30/commits/bdfad3cd03ce163d2cb9accc6f0ccb1e3e134d39
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/30/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/30/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L32-L39
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L34-L41
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L51-L58
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L53-L60

The otherBridge public state variable (L1, L2)

The initialize function (L1, L2)

The bridgeERC721To function (L1, L2)

The bridgeERC721 function, aside from a single error message being different (L1, L2)

Rather than duplicating code, consider having just one contract or library containing the

duplicated code and using it whenever the duplicated functionality is required.

Update: Fixed in commit 8603864482eb734cbeb79e7b5fc994f16685b577 in pull request

10.

L-14 Variables missing the immutable keyword

There are instances in the codebase where state variables are set only once and the system

does not have logic to update those values by any means other than an upgrade.

For instance, the otherBridge address in the L1ERC721Bridge , L2ERC721Bridge , and

the StandardBridge contracts and the messenger address in the

CrossDomainEnabled and StandardBridge contracts are capable of being set only once

for any given proxy via the relevant Initializer functions. If those values need to be

changed after initialization, then an upgrade would need to be performed.

Given that this is the case, unless the intention is to have several proxies using the same logic

contract with different values for these addresses, making them immutable would offer

protection against potential storage slot collisions during upgrades and make the system more

robust overall.

To more explicitly signal that these variables are not meant to be updated outside of upgrades

and to reduce transaction gas costs by statically encoding their values, consider changing

them to immutable variables. If the intended use case demands they are not immutable, then

consider adding inline documentation highlighting the reason why.

Update: Not fixed.

•

•

•

•

Optimism Bedrock and Periphery Audit − Low Severity − 22

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L63
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L84
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L89
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L103
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L142
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L156
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L108
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L122
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/10/commits/8603864482eb734cbeb79e7b5fc994f16685b577
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/10/commits/8603864482eb734cbeb79e7b5fc994f16685b577
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/10/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/10/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L63
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L63
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L84
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L84
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L33
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L33
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts/contracts/libraries/bridge/CrossDomainEnabled.sol#L19
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts/contracts/libraries/bridge/CrossDomainEnabled.sol#L19
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L28
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L28

Notes & Additional

Information

N-01 Functions fail later than required

Throughout the codebase there are a couple of instances where state variables are mutated

before relevant checks are evaluated. For instance:

The _initiateBridgeERC721() function on line 270 of the L2ERC721Bridge

contract burns the L2 NFT before checking if the destination token address matches the

expected value on line 275.

The finalizeWithdrawalTransaction() function on line 183 of the

OptimismPortal contract sets the value of the public finalizedWithdrawals

mapping before checking if there is enough gas on line 188.

In favor of failing early to save gas and to follow the best practice of using the checks-effects-

interactions pattern, consider refactoring these functions to ensure that state variables are only

updated after all checks are complete.

Update: Partially fixed in commit c333d0d1fe979c094e7371c997f91256946a69f8 in pull

request 18. No relevant changes made to the OptimismPortal contract cited in the issue.

N-02 Lack of indexed parameters in event

The sender address parameter for the SentMessage event defined in the

CrossDomainMessenger contract is not indexed. The lack of indexing is inconsistent with

the majority of other address parameters in events throughout the codebase.

Consider indexing the sender parameter to allow off-chain searching and filtering.

Alternatively, to clarify intent, consider adding inline documentation conveying the reasoning

behind not indexing the parameter.

Update: Not fixed. The Optimism team's response:

Need to preserve for backwards compatibility.

•

•

Optimism Bedrock and Periphery Audit − Notes & Additional Information −

23

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L270
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L270
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L270
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L275
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L275
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L183
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L183
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L183
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L188
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/18/commits/c333d0d1fe979c094e7371c997f91256946a69f8
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/18/commits/c333d0d1fe979c094e7371c997f91256946a69f8
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/18/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/18/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L128
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L128
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol

N-03 Require used for condition "that will never

happen"

The relayMessage function inside the crossDomainMessenger contract checks for a

required condition on line 233. This condition is annotated with the inline comment, "Should

never happen".

To better convey intent and to allow for better debugging, consider using an assert

statement rather than a require statement to check for critical system error conditions.

Update: Fixed in commit 2fa8f29cea85ea4952db60d2dad8a29a6a4859cd in pull request

26.

N-04 Confusing else conditions

The ProxyAdmin contract is meant to be the administrator/owner of various types of proxy

contracts. It defines an enum meant to enumerate three supported kinds of proxies that it can

be the administrator of. Namely, it supports proxy types: ERC1967, CHUGSPLASH,

RESOLVED .

The setProxyType function allows the contract owner to map an address to an allowable

proxy type. It implicitly acknowledges that the "default" proxy type will be ERC1967 based on

the 0 value of the enum when it explicitly states that the proxy type only needs to be set if it is

one of the other ("legacy") allowable types.

Several administrative functions of the ProxyAdmin contract check which proxy type a given

address maps to. At the end of such checks there is an else statement that reverts with the

message "ProxyAdmin: unknown proxy type".

Given that a proxy type cannot be set to anything other than a supported type, and given the

fact that the default (0) case maps to the default supported proxy type, the else statements

meant to trigger for some "other" proxy type will never be reachable.

To improve the overall readability and intentionality of the codebase, consider documenting

why the else clause is present or replacing the nested require statement with an assert

statement if this is a condition that should never be reachable.

Update: Fixed in commit d04de66a39b8e42d1c0661bc66cdec046d857759 in pull request

26.

Optimism Bedrock and Periphery Audit − Notes & Additional Information −

24

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L214
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L214
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L233
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L233
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/26/commits/2fa8f29cea85ea4952db60d2dad8a29a6a4859cd
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/26/commits/2fa8f29cea85ea4952db60d2dad8a29a6a4859cd
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/26/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/26/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L43-L47
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L43-L47
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L88
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L88
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L82
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L82
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L143-L152
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L143-L152
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L151
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L151
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/26/commits/d04de66a39b8e42d1c0661bc66cdec046d857759
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/26/commits/d04de66a39b8e42d1c0661bc66cdec046d857759
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/26/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/26/

N-05 Inconsistent approach to auto-refunding

failed token transfers

The StandardBridge contract will automatically create refund transactions for ERC20 token

transfers that fail. Since it checks for generic transaction failure via a try block, it will auto-

refund a wide variety of failure cases.

On the other hand, the L2ERC721Bridge contract only auto-refunds ERC721 token transfers

if the token on the target domain has the wrong interface or disagrees about the address of the

associated L1 token. The L1ERC721Bridge contract has no mechanism to auto-refund token

transfers that would be unsuccessful.

To reduce user confusion, consider standardizing the mechanisms the bridges use to auto-

refund unsuccessful token transfers. In the case where these mechanisms cannot be

standardized, consider thoroughly documenting the failure cases that each bridge endpoint is

capable of creating refund transactions for.

Update: Fixed in commit efc31f3b2131d6d166bf7ebe5c206e532ec67cac in pull request

20.

N-06 Inconsistent terminology

Domain sensitive terminology used across the codebase can be inconsistent, even when

accounting for the specifics of the individual contracts.

For instance, the L2CrossDomainMessenger contract uses layer-specific terminology to

describe the _isOtherMessenger function:

Checks that the message sender is the L1CrossDomainMessenger on L1.

Whereas the L1CrossDomainMessenger contract uses layer-agnostic terminology to

describe its _isOtherMessenger function:

Checks whether the message being sent from the other messenger. (sic)

Consider adopting layer specific terminology wherever the code being documented is layer

specific and using layer agnostic terminology only alongside code that is, itself, layer agnostic.

Update: Fixed in commit c49926220e01399a6edeffa3c0be7cfe8f8bd77e in pull request

27.

Optimism Bedrock and Periphery Audit − Notes & Additional Information −

25

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L313
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L313
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L199-L203
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L199-L203
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/efc31f3b2131d6d166bf7ebe5c206e532ec67cac
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/commits/efc31f3b2131d6d166bf7ebe5c206e532ec67cac
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/20/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2CrossDomainMessenger.sol#L70
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2CrossDomainMessenger.sol#L70
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1CrossDomainMessenger.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1CrossDomainMessenger.sol#L59
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1CrossDomainMessenger.sol#L59
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/c49926220e01399a6edeffa3c0be7cfe8f8bd77e
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/commits/c49926220e01399a6edeffa3c0be7cfe8f8bd77e
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/27/

N-07 Unexplained literal values

Within the codebase there are occurrences of literal values being used with unexplained

meaning. For instance:

The literal storage slot used where the ProxyAdmin sets the storage slot of an

L1ChugSplashProxy

The literal value 0x7e used as a prefix for deposit transaction encoding

The value int256(uint256(type(uint128).max)) that is used (here and here) as

the upper bound for the base fee in the ResourceMetering contract

Literal values in the codebase without an explained meaning make the code harder to read,

understand and maintain for developers, auditors, and external contributors alike.

Consider defining a constant variable for every magic value used, giving it a clear and self-

explanatory name. Additionally, for complex values, inline comments explaining how they were

calculated or why they were chosen are highly recommended.

Update: Partially fixed in commit 9cba510e6eb3878714047e3478d18c0266370429 in pull

request 28. No relevant changes were made to address the third bullet point raised in the issue.

N-08 Easily bypass-able requirement

The L2ERC721Bridge contract has two functions to initiate a withdrawal process, namely,

bridgeERC721 and bridgeERC721To . The same pattern is used in the L1ERC721Bridge

contract.

The bridgeERC721 function requires that msg.sender is not a contract, but this restriction

can be easily bypassed by using bridgeERC721To which has no such restriction.

Consider removing the restriction and simplifying the number of functions if the restriction is

not necessary. Alternatively, consider more thoroughly documenting why the restriction is only

required for one function but not the other.

Update: Fixed in commit f6916d56971441e5daa70f3964942b85c88a29e2 in pull request

15.

•

•

•

Optimism Bedrock and Periphery Audit − Notes & Additional Information −

26

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/ProxyAdmin.sol#L243
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/libraries/Encoding.sol#L35
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/ResourceMetering.sol#L96
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/ResourceMetering.sol#L119
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/ResourceMetering.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/ResourceMetering.sol
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/28/commits/9cba510e6eb3878714047e3478d18c0266370429
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/28/commits/9cba510e6eb3878714047e3478d18c0266370429
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/28/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/28/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L122
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L122
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L156
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L156
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L108-L159
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L108-L159
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L131
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L131
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/15/commits/f6916d56971441e5daa70f3964942b85c88a29e2
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/15/commits/f6916d56971441e5daa70f3964942b85c88a29e2
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/15/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/15/

N-09 Typographical errors

The following typographical errors were identified in the codebase:

"recieve" should be "receive"

"/**q" should be "/**"

"Intializer" should be "Initializer"

"being sent from" should be "being sent is from"

"deposted" should be "deposited"

"transfering" should be "transferring"

"access" should be "address"

"transfering" should be "transferring"

"erreneous" should be "erroneous"

"rerutn" should be "return"

"If the of this" should be "If the value of this"

"based an amount" should be "based on the amount"

"depoisited" should be "deposited"

To improve the overall readability of the codebase, consider correcting these typographical

errors.

Update: Partially fixed in commit 4df56a057a31958911366f976121574b9a371314 in pull

request 14. Not all typos were addressed.

N-10 Undocumented implicit approval

requirements

In the StandardBridge and L1ERC721Bridge contracts, when a token is transferred into

the system via its safeTransferFrom or transferFrom functions, there is an implicit

requirement that the address the token is being transferred from has already granted the

appropriate approvals.

In favor of explicitness and to improve the overall clarity of the codebase, consider

documenting all approval requirements in the relevant functions' inline documentation.

Update: Partially fixed in commit e97820c3e2eb5b0df59b15e30a7bbb26d5ddd168 in pull

request 8. No relevant changes were made to the StandardBridge contract cited in the

issue.

•

•

•

•

•

•

•

•

•

•

•

•

•

Optimism Bedrock and Periphery Audit − Notes & Additional Information −

27

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts/contracts/libraries/bridge/CrossDomainEnabled.sol#L18
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts/contracts/libraries/bridge/CrossDomainEnabled.sol#L68
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/CrossDomainMessenger.sol#L330
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1CrossDomainMessenger.sol#L59
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L19
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol#L11
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol#L238
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol#L13
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L146
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L2OutputOracle.sol#L226
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/OptimismPortal.sol#L45-L46
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/ResourceMetering.sol#L67
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L21
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/14/commits/4df56a057a31958911366f976121574b9a371314
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/14/commits/4df56a057a31958911366f976121574b9a371314
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/14/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/14/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L450
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L450
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L237
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L237
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/8/commits/e97820c3e2eb5b0df59b15e30a7bbb26d5ddd168
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/8/commits/e97820c3e2eb5b0df59b15e30a7bbb26d5ddd168
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/8/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/8/

N-11 Unused inherited contract

The L1ERC721Bridge and L2ERC721Bridge contracts import (here and here, respectively)

and inherit from the OpenZeppelin OwnableUpgradeable contract, but do not use any of its

functionality.

To simplify the codebase and avoid potential confusion, consider not importing or inheriting

from contracts unless their logic is necessary for the inheriting contract to operate as intended.

Update: Fixed in commit 09ac4b02e1e277a44d6f15a906e2d6b2522baaa0 in pull request

7.

N-12 Virtual functions never overridden

In the StandardBridge contract, the bridgeERC20 and bridgeERC20To functions are

marked virtual , but neither the L1StandardBridge contract nor the

L2StandardBridge contract that inherits from StandardBridge overrides these

functions.

To improve the overall explicitness and intentionality of the codebase, consider removing the

virtual keyword from functions if it is not needed or documenting why functions are marked

virtual if they are never overridden.

Update: Not fixed. The Optimism team's response:

This is a reusable contract intended to be used by other projects as well.

Optimism Bedrock and Periphery Audit − Notes & Additional Information −

28

https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L21
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L21
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L23
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L23
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L1/L1ERC721Bridge.sol#L7-L9
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-periphery/contracts/L2/L2ERC721Bridge.sol#L7-L9
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/7/commits/09ac4b02e1e277a44d6f15a906e2d6b2522baaa0
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/7/commits/09ac4b02e1e277a44d6f15a906e2d6b2522baaa0
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/7/
https://github.com/ethereum-optimism/optimism-audit-fixes/pull/7/
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L214
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L214
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L247
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/universal/StandardBridge.sol#L247
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L1/L1StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol
https://github.com/ethereum-optimism/optimism/blob/93d3bd411a8ae75702539ac9c5fe00bad21d4104/packages/contracts-bedrock/contracts/L2/L2StandardBridge.sol

Conclusions

No critical or high severity issues were found. Some suggestions to improve code cleanliness

and quality were made.

Optimism Bedrock and Periphery Audit − Conclusions − 29

	Optimism Bedrock and Periphery Audit
	Table of Contents
	Summary
	Scope
	System Overview
	Security assumptions
	Findings
	Medium Severity
	Asymmetric failure behavior of ERC721 bridges
	Confusing deprecated OptimismMintableERC20 interface considerations
	ETH can be sent to undeliverable recipient
	Unsatisfiable gasLimit values could lead to frozen assets
	Incomplete backwards compatibility
	Lack of input validation
	CrossDomainMessenger allows sending messages to unrelayable addresses
	Upgradeability inconsistencies

	Low Severity
	Documentation could be improved
	Multiple OpenZeppelin contracts versions in use
	Not inheriting supported interfaces
	Standard Bridge does not support tokens with transfer fees
	Auto withdrawal transactions can be misleading
	Circumventable requirement that owner and proposer are distinct
	Deprecated math library
	ERC721 bridge contracts not using safeTransferFrom
	Misleading inline documentation
	Specs do not cover all aspects of current implementation
	Potentially confusing naming
	Potential revert-inducing overflow
	Duplicated code
	Variables missing the immutable keyword

	Notes & Additional Information
	Functions fail later than required
	Lack of indexed parameters in event
	Require used for condition "that will never happen"
	Confusing else conditions
	Inconsistent approach to auto-refunding failed token transfers
	Inconsistent terminology
	Unexplained literal values
	Easily bypass-able requirement
	Typographical errors
	Undocumented implicit approval requirements
	Unused inherited contract
	Virtual functions never overridden

	Conclusions

