CAMNTINM

Optimism Cycl

Security Review

Cantina Managed review by:
Cccz, Security Researcher

Jeiwan, Security Researcher
Christos Pap, Associate Security Re

February 15, 2024

Contents

1

Introduction

1.1 About Cantina .
1.2 Disclaimer . ..
1.3 Risk assessment

1.3.1 Severity Classification e

Security Review Summary

Findings
3.1 LowRisk

3.1.1 Avoid using real values in the implementation
3.1.2 Different sources of values for checking and deployment
3.1.3 Gapsshould be reserved for FeeVault,
3.1.4 OP Chain deployment process is not compatible with MCP L1
3.1.5 Inconsistentversionupdates e
3.1.6 Incorrectimplementation initializationtesting L.
3.1.7 Resource config values can be modified during the MCP L1 upgrade

3.2 Informational .

3.2.1 Incorrect comment in the ERC721Bridge contract regarding storage layout
3.2.2 address(0) checks are missing from the ERC721Bridge contract
3.2.3 Missingorincomplete NatSpec. e
3.2.4 L20utputOracle.t.sol removed check for 1atestBlockNumber
3.2.5 OptimismPortal initialization tests lack resource configchecks

3.2.6 Typos ..

3.2.7 Upgrading poses the risk of unintentional modification of state variables

1 Introduction

1.1 About Cantina

Cantinais a security services marketplace that connects top security researchers and solutions with clients.
Learn more at cantina.xyz

1.2 Disclaimer

Cantina Managed provides a detailed evaluation of the security posture of the code at a particular moment
based on the information available at the time of the review. While Cantina Managed endeavors to identify
and disclose all potential security issues, it cannot guarantee that every vulnerability will be detected or
that the code will be entirely secure against all possible attacks. The assessment is conducted based on
the specific commit and version of the code provided. Any subsequent modifications to the code may
introduce new vulnerabilities that were absent during the initial review. Therefore, any changes made
to the code require a new security review to ensure that the code remains secure. Please be advised
that the Cantina Managed security review is not a replacement for continuous security measures such as
penetration testing, vulnerability scanning, and regular code reviews.

1.3 Risk assessment

Severity Description
Critical Must fix as soon as possible (if already deployed).
High Leads to a loss of a significant portion (>10%) of assets in the protocol, or sig-

nificant harm to a majority of users.

Medium Global losses <10% or losses to only a subset of users, but still unacceptable.

Low Losses will be annoying but bearable. Applies to things like griefing attacks that
can be easily repaired or even gas inefficiencies.

Gas Optimization Suggestions around gas saving practices.

Informational Suggestions around best practices or readability.

1.3.1 Severity Classification

The severity of security issues found during the security review is categorized based on the above table.
Critical findings have a high likelihood of being exploited and must be addressed immediately. High find-
ings are almost certain to occur, easy to perform, or not easy but highly incentivized thus must be fixed
as soon as possible.

Medium findings are conditionally possible or incentivized but are still relatively likely to occur and should
be addressed. Low findings a rare combination of circumstances to exploit, or offer little to no incentive
to exploit but are recommended to be addressed.

Lastly, some findings might represent objective improvements that should be addressed but do not im-
pact the project’s overall security (Gas and Informational findings).

https://cantina.xyz

2 Security Review Summary

Optimismis a fast, stable, and scalable L2 blockchain built by Ethereum developers, for Ethereum develop-
ers. Built as a minimal extension to existing Ethereum software, Optimism's EVM-equivalent architecture
scales your Ethereum apps without surprises. If it works on Ethereum, it works on Optimism at a fraction
of the cost.

From Jan 22nd to Feb 5th the Cantina team conducted a review of optimism on commit hash e6ef3a90.
The team identified a total of 14 issues in the following risk categories:

* Critical Risk: 0

+ High Risk: 0

* Medium Risk: 0

* Low Risk: 7

* Gas Optimizations: 0

* Informational: 7

https://github.com/ethereum-optimism/optimism
https://github.com/ethereum-optimism/optimism/tree/e6ef3a900c42c8722e72c2e2314027f85d12ced5

3 Findings

3.1 Low Risk
3.1.1 Avoid using real values in the implementation

Severity: Low Risk
Context: L1CrossDomainMessenger.sol#L28-L39

Description: Calling initialize() in the constructor() initializes superchainConfig and portal to ad-
dress(0), but otherMessenger remains Predeploys.L2_CROSS_DOMAIN_MESSENGER:

constructor() CrossDomainMessenger() {

initialize({ _superchainConfig: SuperchainConfig(address(0)), _portal: OptimismPortal(payable(address(0)))
- });
}

/// @notice Initializes the contract
/// @param _superchainConfig Contract of the SuperchainConfig contract on this network.
/// @param _portal Contract of the (ptimismPortal contract on this network.
function initialize(SuperchainConfig _superchainConfig, OptimismPortal _portal) public initializer {
superchainConfig = _superchainConfig;
portal = _portal;
__CrossDomainMessenger_init({ _otherMessenger: CrossDomainMessenger (Predeploys.L2_CROSS_DOMAIN_MESSENGER)
= });
}

Although the correct checks are made in the tests, however, we should not use the real values in the
implementation to ensure that there is a difference between the proxy and the implementation, thus
avoiding confusion.

And, considering that this implementation will be used by multiple proxies, it is not a good choice to keep
it as a certain L2 value.

Recommendation: It is recommended not to use real values in the implementation.

3.1.2 Different sources of values for checking and deployment

Severity: Low Risk
Context: I1.go#L121-L123, L1CrossDomainMessenger.sol#L38

Description: In L1 (), we check that the values in the configuration (from 1ist/config/chainConfig pa-
rameter) are the same as on the chain, and call the initialize() with them later. However, for pre-
deploys, the address in op-bindings/predeploys/addresses.go is used for checking and the address in
packages/contracts-bedrock/src/libraries/Predeploys.sol is used for deploying. If the addresses in
the two files are not synchronized, then this will result in incorrect addresses being used when deploy-
ment.

import (
/.
"github.com/ethereum-optimism/optimism/op-bindings/predeploys"
/7
if otherMessenger != predeploys.L2CrossDomainMessengerAddr {
return fmt.Errorf("upgrading LiCrossDomainMessenger: OtherMessenger address doesn't match config")

}

import { Predeploys } from "src/libraries/Predeploys.sol"”;
/7.
function initialize(SuperchainConfig _superchainConfig, OptimismPortal _portal) public initializer {
superchainConfig = _superchainConfig;
portal = _portal;
__CrossDomainMessenger_init({ _otherMessenger:
< CrossDomainMessenger (Predeploys.L2_CROSS_DOMAIN_MESSENGER) });
¥

Recommendation: It is recommended to add checks to ensure that the values to be used are the same
in the two files.

https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/L1CrossDomainMessenger.sol#L28-L39
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/op-chain-ops/upgrades/l1.go#L121-L123
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/L1CrossDomainMessenger.sol#L38

3.1.3 Gaps should be reserved for FeeVault

Severity: Low Risk
Context: FeeVault.sol#L32
Description: There is no gaps reserved in FeeVault abstract contract.

The BaseFeeVault, L1FeeVault, and SequencerFeeVault that inherit from FeeVault don't have their own
state variables yet, so it's possible to reserve gaps in FeeVault now.

If any contracts that inherit from FeeVault have their own state variables, then it will not be possible to
add any new state variables to FeeVault. This will break FeeVault contract's upgradability.

Recommendation: It is recommended to reserve gaps in FeeVault.

abstract contract FeeVault {
/// @notice Enum representing where the FeeVault withdraws funds to.
/// Q@custom:value L1 FeeVault withdraws funds to L1.
/// @custom:value L2 FeeVault withdraws funds to L2.
enum WithdrawalNetwork {
L1,
L2
}

/// @notice Minimum balance before a withdrawal can be triggered.
uint256 public immutable MIN_WITHDRAWAL_AMOUNT;

/// @notice Wallet that will receive the fees.
address public immutable RECIPIENT;

/// @notice Network which the RECIPIENT will receive fees on.
WithdrawalNetwork public immutable WITHDRAWAL_NETWORK;

/// @notice The minimum gas limit for the FeeVault withdrawal transaction.
uint32 internal constant WITHDRAWAL_MIN_GAS = 35_000;

/// @notice Total amount of wei processed by the contract.
uint256 public totalProcessed;

+ uint256[49] private __gap;

3.1.4 OP Chain deployment process is not compatible with MCP L1

Severity: Low Risk
Context: Deploy.s.sol#L303-L305

Description: The reviewed MCP L1 upgrade makes L1 contract implementations re-usable by different
OP Chains, via their respective L1 proxy contracts. However, the process of deploying OP Chains wasn't
updated accordingly: when setting up a new chain, new L1 implementations are deployed and set in
respective proxies (Deploy.s.sol#L.304-L305):

function setupOpChain() public {
console.log('"Deploying OP Chain");
/..
deployProxies();
deployImplementations(); // Qaudit deploys new implementations instead of re-using existing ones
initializeImplementations();

/o

*+ Deploy.s.sol#1.329-1L342:

https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/universal/FeeVault.sol#L32
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/scripts/Deploy.s.sol#L303-L305
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/scripts/Deploy.s.sol#L304-L305
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/scripts/Deploy.s.sol#L329-L342

function deployImplementations() public {
console.log("Deploying implementations");
deployOptimismPortal();
deployLiCrossDomainMessenger();
deployL20utputOracle();
deployOptimismMintableERC20Factory();
deploySystemConfig();
deployLiStandardBridge();
deployL1ERC721Bridge();
deployDisputeGameFactory();
deployPreimageOracle();
deployMips();

As a result, the next deployed OP Chain will be using its implementation contracts, which won't be covered
by the atomic upgrades feature.

Recommendation: Consider updating the deployment script to re-use existing implementation
addresses in newly deployed OP Chains, instead of deploying new ones.

3.1.5 Inconsistent version updates

Severity: Low Risk
Context: L2CrossDomainMessenger.sol#L18-L19, L1CrossDomainMessenger.sol#L23-L25

Description: The reviewed MCP L1 upgrade doesn't assume backward incompatible changes. Indeed, the
changes made in L1CrossDomainMessenger, L2CrossDomainMessenger, and CrossDomainMessenger
didn't break backward compatibility.

However, L1CrossDomainMessenger and L2CrossDomainMessenger received different version updates:
1. LiCrossDomainMessenger was updated from 2.2.0 to 2.3.0 (a minor update).
2. L2CrossDomainMessenger was updated from 1.9.0 to 2.0.0 (a major update).

As a result, the upgrade will signal an incorrect version update, which may impact third-party integrations
and off-chain tools.

Recommendation: In L2CrossDomainMessenger, consider setting version to 1.10.0.

3.1.6 Incorrect implementation initialization testing

Severity: Low Risk
Context: L2CrossDomainMessenger.t.sol#L22-1L28, L2StandardBridge.t.sol#L25-L33

Description: The L2CrossDomainMessenger_Test.test_constructor_succeeds() is intended to check that
the implementation of L2CrossDomainMessenger was initialized with zero values. However, the test en-
sures that the address of the other messenger was set to a real value:

L2CrossDomainMessenger impl = L2CrossDomainMessenger(deploy.mustGetAddress("L2CrossDomainlMessenger"));
assertEq(address (impl.0THER_MESSENGER()), address(liCrossDomainMessenger));
assertEq(address(impl.otherMessenger()), address(1liCrossDomainMessenger));
assertEq(address(impl.l1CrossDomainMessenger()), address(liCrossDomainMessenger));

The cause of this is that deploy.mustGetAddress ("L2CrossDomainMessenger") returns the address of the
proxy, not the implementation (Artifacts.s.sol#L134-L135):

if (digest == keccak256(bytes("L2CrossDomainMessenger"))) {
return payable(Predeploys.L2_CROSS_DOMAIN_MESSENGER) ;

This issue (with an identical root cause) is also present in the L2StandardBridge_Test.test_constructor_-
succeeds() test case.

As a result, the tests will fail to detect when the implementation of the L2 contract is initialized with real
values. It's recommended that implementation contracts are always initialized with zero values so they
cannot be confused and/or used as the main contracts.

https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L2/L2CrossDomainMessenger.sol#L18-L19
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/L1CrossDomainMessenger.sol#L23-L25
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/L1CrossDomainMessenger.sol#L15
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L2/L2CrossDomainMessenger.sol#L17
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/universal/CrossDomainMessenger.sol#L87
https://github.com/ethereum-optimism/optimism/commit/e6ef3a900c42c8722e72c2e2314027f85d12ced5#diff-758b0324563ef5a12c2a621194fc988535939aba35f80f43f30c36c0c8f5affdL25-R25
https://github.com/ethereum-optimism/optimism/commit/e6ef3a900c42c8722e72c2e2314027f85d12ced5#diff-a05e63d94979f621f79dd9dd22c9efb7f7033bbe460410a5fe55199b962a2ffbL18-R19
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L2/L2CrossDomainMessenger.t.sol#L22-L28
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L2/L2StandardBridge.t.sol#L25-L33
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L2/L2CrossDomainMessenger.t.sol#L23
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/scripts/Artifacts.s.sol#L134-L135
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L2/L2StandardBridge.t.sol#L26
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L2/L2StandardBridge.t.sol#L26

Recommendation: In the L2CrossDomainMessenger_Test.test_constructor_succeeds() test case, con-
sider running the checks against the implementation address, not the proxy address. The implementation
address can be obtained by calling the Proxy . implementation() function as an admin, or by reading the
address from the corresponding storage slot.

This recommendation is also applicable to L2StandardBridge_Test.test_constructor_succeeds().

3.1.7 Resource config values can be modified during the MCP L1 upgrade

Severity: Low Risk
Context: |1.go#L728

Description: The deployment process implemented in the op-chain-ops/upgrades/11.go file is intended
to carry over the values of the removed immutable variables to their mutable counterparts. Additionally,
the process sets values of newly added variables (e.g. SystemConfig's stratBlock). If the initialization of
a contract requires setting variables that were not part of the MCP L1 upgrade, their values are carried
over without modification (e.g. the SystemConfig settings).

However, the resource config of SystemConfigis set to the default value during the upgrade of the contract
(11.g0#L728):

calldata, err := systemConfigABI.Pack(
"initialize",
finalSystemQOwner,
gasPriceOracleOverhead,
gasPriceOracleScalar,
batcherHash,
12GenesisBlockGasLimit,
p2pSequencerAddress,
genesis.DefaultResourceConfig, // CGaudit sets default values
chainConfig.BatchInboxAddr,
bindings.SystemConfigAddresses{

LilCrossDomainMessenger: common . Address(list.L1CrossDomainMessengerProxy),
L1ERC721Bridge: common . Address(1list.L1ERC721BridgeProxy),
L1StandardBridge: common . Address(list.L1StandardBridgeProxy),
L20utputOracle: common . Address(list.L20utputOracleProxy),
OptimismPortal: common . Address(list.OptimismPortalProxy),

OptimismMintableERC20Factory: common.Address(list.OptimismMintableERC20FactoryProxy),
3,

The resource config of a SystemConfig can have values that differ from the default ones as a result of a
call to SystemConfig.setResourceConfig().

As aresult, the upgrade can modify the resource config of a deployed SystemConfig contract. The resource
config represents the configuration for the EIP-1559 based curve for the deposit gas market. Unintentional
modification of the values can impact the gas metering of deposits of an OP chain.

Recommendation: In the upgrades.SystemConfig() function, consider reading the current values of the
SystemConfig's resource config and carrying them over to the initialize() function call.

https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/op-chain-ops/upgrades/l1.go#L728
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/op-chain-ops/upgrades/l1.go#L625-L629
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/op-chain-ops/upgrades/l1.go#L669-L697
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/op-chain-ops/upgrades/l1.go#L728
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L339
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/op-chain-ops/upgrades/l1.go#L612

3.2 Informational
3.2.1 Incorrect comment in the ERC721Bridge contract regarding storage layout

Severity: Informational
Context: ERC721Bridge.sol#L25-26

Description: The comment in the ERC721Bridge contract states that there are 50 reserved storage slots.
However, it should indicate that 49 slots are reserved, not 50. This discrepancy arises because the com-
bined storage slots of the ERC721Bridge and Initializable total 49 slots rather than the stated 50.

The storage slot for the deposit mapping in the parent contract starts at 49 not 50.

Recommendation: It is recommended to modify the comment in the ERC721Bridge contract:

- /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
+ /// @notice Reserve extra slots (to a total of 49) in the storage layout for future upgrades.
uint256[46] private __gap;

3.2.2 address(0) checks are missing from the ERC721Bridge contract

Severity: Informational
Context: ERC721Bridge.sol#L73-L82

Description: The __ERC721Bridge_init function is called during the initialization of both the
LT1ERC721Bridge and in the L2ERC721Bridge. However, the address(0) checks that were present in the
previous version are now missing from the ERC721Bridge contract.

/// @notice Initializer.

/// @param _messenger Contract of the CrossDomainNessenger on this network.
/// @param _otherBridge Contract of the ERC721 bridge on the other network.
// solhint-disable-nezt-line func-name-mizedcase

function __ERC721Bridge_init(

CrossDomainMessenger _messenger,
StandardBridge _otherBridge

internal
onlyInitializing
{
messenger = _messenger;
otherBridge = _otherBridge;
}

Recommendation: Since the address(0) are used to initialize the _messenger oOr _otherBridge,
address (0xdEaD) can be used on both the L1ERC721Bridge and L2ERC721Bridge contracts while also
including the zero-address checks. Additionally, instead of initializing with zero or dead values, you can
consider using the _disablelnitializers method on the constructor.

3.2.3 Missing or Incomplete NatSpec

Severity: Informational

Context: SystemConfig.sol#L215, SystemConfig.sol#L220, SystemConfig.sol#L225, SystemCon-
fig.sol#L230, SystemConfig.sol#L235, SystemConfig.sol#L240, SystemConfig.sol#L245

Description: Some instances of incomplete or missing NatSpec documentation have been found in the
codebase. There are listed in the recommendation section with the suggested fix.

Recommendation:

* In SystemConfig.sol, the 11ERC721Bridge(), 11StandardBridge (), 120utputOracle(), optimismPor-
tal(), optimismMintableERC20Factory(), batchInbox () and the startBlock () functions are missing
the NatSpec @return.

https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/universal/ERC721Bridge.sol#L25-26
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/universal/ERC721Bridge.sol#L25-26
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/snapshots/storageLayout/L1ERC721Bridge.json#L45
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/universal/ERC721Bridge.sol#L25-26
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/universal/ERC721Bridge.sol#L73-L82
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/universal/ERC721Bridge.sol#L73-L82
https://github.com/ethereum-optimism/optimism/blob/c368f633c24f099029e0f081238dc7c47b619b80/packages/contracts-bedrock/src/L1/L1ERC721Bridge.sol#L31-L44
https://github.com/ethereum-optimism/optimism/blob/c368f633c24f099029e0f081238dc7c47b619b80/packages/contracts-bedrock/src/L2/L2ERC721Bridge.sol#L28-L39
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/ecd2ca2cd7cac116f7a37d0e474bbb3d7d5e1c4d/contracts/proxy/utils/Initializable.sol#L131
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L215
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L220
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L225
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L230
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L230
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L235
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L240
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L245
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol

3.2.4 L20utputOracle.t.sol removed check for latestBlockNumber

Severity: Informational
Context: L20utputOracle.t.sol#L41-L61

Description: L20utputQOracle.t.sol seems to have mistakenly removed the check for 1atestBlockNumber
in test_initialize_succeeds() when upgrading.

Recommendation: It is recommended to add back the check for latestBlockNumber in test_initial-
ize_succeeds().

function test_initialize_succeeds() external {

address
address
uint256
uint256
uint256
uint256
uint256

challenger

assertEq(120utputQOracle.
assertEq(120utputOracle.
assertEq(120utputQracle.
assertEq(120utputQOracle.
assertEq(120utputOracle.
assertEq(120utputQOracle.
assertEq(120utputOracle.
assertEq(120utputOracle.
assertEq(120utputOracle.
assertEq(120utputOracle.
assertEq(120utputOracle.
assertEq(120utputOracle.
assertEq(120utputQOracle.

proposer = deploy.cfg().120utputlracleProposer();
deploy.cfg().120utputOracleChallenger();
submissionInterval = deploy.cfg().120utputOracleSubmissionInterval();
startingBlockNumber = deploy.cfg().120utputOracleStartingBlockNumber();
startingTimestamp = deploy.cfg().120utputOracleStartingTimestamp();
12BlockTime = deploy.cfg().12BlockTime();

finalizationPeriodSeconds = deploy.cfg().finalizationPeriodSeconds();

SUBMISSION_INTERVAL(), submissionInterval);
submissionInterval(), submissionInterval);
L2_BLOCK_TIME(), 12BlockTime);

12BlockTime(), 12BlockTime);

latestBlockNumber(), startingBlockNumber) ;
startingBlockNumber (), startingBlockNumber);
startingTimestamp(), startingTimestamp);
finalizationPeriodSeconds(), finalizationPeriodSeconds);
PROPOSER(), proposer);

proposer(), proposer);

CHALLENGER(), challenger);
FINALIZATION_PERIOD_SECONDS(), finalizationPeriodSeconds);
challenger(), challenger);

3.2.5 OptimismPortal initialization tests lack resource config checks

Severity: Informational
Context: OptimismPortal.t.sol#L34-L42, OptimismPortal.t.sol#L45-L56

Description: The test_constructor_succeeds and test_initialize_succeeds test cases check the initial val-
ues in the implementation and the proxy of OptimismPortal. However, those checks are not complete:
the OptimismPortal.initialize() function also initializes the ResourceMetering contracts and sets the initial
resource config-these config values are not checked in the tests.

Recommendation: In above mentioned test cases, consider checking the initial resource config values
of OptimismPortal.

3.2.6 Typos

Severity: Informational
Context: L20utputOracle.t.sol#L454, OptimismPortal.sol#L26
Description: During the review, the following typos were found in the codebase:

1. L20utputOracle.t.sol#L454; "test_initalize_|2BlockTimeZero_reverts" should be "test_initialize_-
[2BlockTimeZero_reverts";

2. In OptimismPortal.sol#L26 wheih should be which.

17/

@notice Represents a proven withdrawal.

117
- /17
+///

11/

Qcustom:field outputRoot
Q@custom:field timestamp
Qcustom:field timestamp

Root of the L2 output this was proven against.
Timestamp at whcih the withdrawal was proven.
Timestamp at which the withdrawal was proven.

Qcustom:field 120utputIndex Index of the output this was proven against.

Recommendation: Consider fixing the typos shown above.

https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L1/L2OutputOracle.t.sol#L41-L61
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L1/OptimismPortal.t.sol#L34-L42
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L1/OptimismPortal.t.sol#L45-L56
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L1/OptimismPortal.t.sol#L34
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L1/OptimismPortal.t.sol#L45
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L124
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/ResourceMetering.sol#L13
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L1/L2OutputOracle.t.sol#L454
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L26
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/test/L1/L2OutputOracle.t.sol#L454
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/OptimismPortal.sol#L26

3.2.7 Upgrading poses the risk of unintentional modification of state variables

Severity: Informational
Context: SystemConfig.sol#L153-L188, |1.go#L720-L738

Description: The upgradeable contracts implement only one state initialization function (initialize()),
which is used both during deployments and upgrades. This doesn't allow to initialize state variables se-
lectively during an upgrade.

Consider SystemConfig.initialize() as an example. The reviewed MCP L1 upgrade has added new state
variables to the contract, which were all added to the initialize () for initialization during deployment.
But, since the same initializer is used during upgrades, the values of the previously defined state variables
need to be carried carried over without modification, when upgrading the contract (I1.go#L664-L738):

gasPriceOracleOverhead, err := systemConfig.Overhead(&bind.CallOpts{})

/o
gasPriceOracleScalar, err := systemConfig.Scalar(&bind.CallOpts{})
/.
batcherHash, err := systemConfig.BatcherHash(&bind.CallOpts{})
/..
12GenesisBlockGasLimit, err := systemConfig.GasLimit(&bind.CallOpts{})
/o
p2pSequencerAddress, err := systemConfig.UnsafeBlockSigner(&bind.CallOpts{})
/o
finalSystemOwner, err := systemConfig.Owner(&bind.CallOpts{})
/..
calldata, err := systemConfigABI.Pack(
"initialize", // @audit old variables are carried over
finalSystemOwner, //
gasPriceOracleOverhead, //
gasPriceOracleScalar, //
batcherHash, //
12GenesisBlockGasLimit, //
p2pSequencerAddress, //
genesis.DefaultResourceConfig, //
chainConfig.BatchInboxAddr, //
bindings.SystemConfighAddresses{ // @audit new variables are set
LilCrossDomainMessenger: common . Address(list.L1CrossDomainMessengerProxy),
L1ERC721Bridge: common . Address(1list.L1ERC721BridgeProxy),
L1StandardBridge: common . Address(list.L1StandardBridgeProxy),
L20utputOracle: common . Address(1list.L20utputOracleProxy),
OptimismPortal: common . Address(list.OptimismPortalProxy),

OptimismMintableERC20Factory: common.Address(list.OptimismMintableERC20FactoryProxy),
3,

This creates the risk of mistakenly modifying an existing storage value during an upgrade. Since proxy
addresses of L1 contracts are now stored in storage, an unintentional modification of a mutable proxy
address can disrupt the work of an OP chain.

Recommendation: Consider having multiple initializing functions in the upgradeable contracts:

1. The main initializer, e.g. initialize(), could be used to initialize state during deployments. It'd
initialize all state variables of a contract.

2. The upgrade initializer, e.g. initialize_upgrade(), would initialize only upgrade-specific storage
variables.

To avoid initialization conflicts, consider using versioning via the reinitializer modifier.

10

https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L153-L188
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/op-chain-ops/upgrades/l1.go#L720-L738
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/packages/contracts-bedrock/src/L1/SystemConfig.sol#L153
https://github.com/ethereum-optimism/optimism/blob/e6ef3a900c42c8722e72c2e2314027f85d12ced5/op-chain-ops/upgrades/l1.go#L664-L738
https://docs.openzeppelin.com/contracts/4.x/api/proxy#Initializable-reinitializer-uint8-

	Introduction
	About Cantina
	Disclaimer
	Risk assessment
	Severity Classification

	Security Review Summary
	Findings
	Low Risk
	Avoid using real values in the implementation
	Different sources of values for checking and deployment
	Gaps should be reserved for FeeVault
	OP Chain deployment process is not compatible with MCP L1
	Inconsistent version updates
	Incorrect implementation initialization testing
	Resource config values can be modified during the MCP L1 upgrade

	Informational
	Incorrect comment in the ERC721Bridge contract regarding storage layout
	address(0) checks are missing from the ERC721Bridge contract
	Missing or Incomplete NatSpec
	L2OutputOracle.t.sol removed check for latestBlockNumber
	OptimismPortal initialization tests lack resource config checks
	Typos
	Upgrading poses the risk of unintentional modification of state variables

